Phylogenetic Network Simplification

系统发育网络简化

基本信息

  • 批准号:
    22H03550
  • 负责人:
  • 金额:
    $ 10.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

A multi-labeled tree (or MUL-tree, for short) is a phylogenetic tree in which every leaf label may appear more than once. Such trees have applications to the construction of phylogenetic networks by folding operations [Huber & Moulton, Mathematical Biology, 2006]. We considered the MUL-tree Set Pruning for Consistency problem (MULSETPC), which takes as input a set of MUL-trees and asks if there exists a perfect pruning of each MUL-tree that results in a consistent set of single-labeled trees. MULSETPC was known to be NP-complete [Gascon, Dondi, and El-Mabrouk, Proceedings of IWOCA 2021] when the MUL-trees are binary, each leaf label is used at most three times, and the number of MUL-trees is unbounded. We resolved an open question posed by Gascon et al. by proving a much stronger result, namely that MULULSETPC is NP-complete even when there are only two MUL-trees, every leaf label is used at most twice, and either every MUL-tree is binary or every MUL-tree has constant height. Furthermore, we introduced an extension of MULSETPC that we call MULSETPComp, which replaces the notion of consistency with compatibility, and proved that MULSETPComp is NP-complete even when there are only two MUL-trees, every leaf label is used at most thrice, and every MUL-tree has constant height. Finally, we designed a polynomial-time algorithm for instances of MULSETPC with a constant number of binary MUL-trees, in the special case where every leaf label occurs exactly once in at least one MUL-tree.
多标记树(或简称 MUL 树)是一种系统发生树,其中每个叶标签可能出现多次。这种树可用于通过折叠操作构建系统发育网络 [Huber & Moulton, Mathematical Biology, 2006]。我们考虑了 MUL 树集合剪枝一致性问题 (MULSETPC),该问题将一组 MUL 树作为输入,并询问是否存在对每个 MUL 树的完美剪枝,从而产生一组一致的单标记树。当 MUL 树是二元树时,MULSETPC 被认为是 NP 完全的 [Gascon、Dondi 和 El-Mabrouk,Proceedings of IWOCA 2021],每个叶子标签最多使用 3 次,并且 MUL 树的数量是无界的。我们解决了 Gascon 等人提出的一个悬而未决的问题。通过证明一个更强的结果,即即使只有两个 MUL 树,MULULSETPC 也是 NP 完全的,每个叶标签最多使用两次,并且每个 MUL 树都是二叉树,或者每个 MUL 树具有恒定的高度。此外,我们引入了 MULSETPC 的扩展,称为 MULSETPComp,它用兼容性取代了一致性的概念,并证明了即使只有两棵 MUL 树,每个叶子标签最多使用三次,并且每个 MUL 树具有恒定的高度,MULSETPComp 也是 NP 完全的。最后,我们为具有恒定数量的二叉 MUL 树的 MULSETPC 实例设计了一种多项式时间算法,在特殊情况下,每个叶标签在至少一个 MUL 树中只出现一次。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximation Algorithms for the Longest Run Subsequence Problem
  • DOI:
    10.4230/lipics.cpm.2023.2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Y. Asahiro;Hiroshi Eto;Mingyang Gong;J. Jansson;Guohui Lin;Eiji Miyano;H. Ono;Shunichi Tanaka
  • 通讯作者:
    Y. Asahiro;Hiroshi Eto;Mingyang Gong;J. Jansson;Guohui Lin;Eiji Miyano;H. Ono;Shunichi Tanaka
MUL-Tree Pruning for Consistency and Compatibility
用于一致性和兼容性的 MUL 树修剪
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Hampson;D. J. Harvey;C. Iliopoulos;J. Jansson;Z. Lim;W.-K. Sung
  • 通讯作者:
    W.-K. Sung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ジャンソン ジェスパー其他文献

ジャンソン ジェスパー的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ジャンソン ジェスパー', 18)}}的其他基金

Phylogenetic Network Simplification
系统发育网络简化
  • 批准号:
    23K24807
  • 财政年份:
    2024
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Travel: NSF Student Travel Grant for 2023 Conference on Computational Complexity
旅行:2023 年计算复杂性会议 NSF 学生旅行补助金
  • 批准号:
    2326701
  • 财政年份:
    2023
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Standard Grant
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
  • 批准号:
    2317280
  • 财政年份:
    2023
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
  • 批准号:
    2302174
  • 财政年份:
    2023
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
  • 批准号:
    2302173
  • 财政年份:
    2023
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Standard Grant
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
  • 批准号:
    RGPIN-2016-04274
  • 财政年份:
    2022
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Discovery Grants Program - Individual
Biological and Computational Complexity
生物和计算复杂性
  • 批准号:
    CRC-2020-00011
  • 财政年份:
    2022
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Canada Research Chairs
Computational complexity of combinatorial problems: graph homomorphisms, packings, and good characterizations
组合问题的计算复杂性:图同态、打包和良好的表征
  • 批准号:
    RGPIN-2014-04760
  • 财政年份:
    2022
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Discovery Grants Program - Individual
Knot theory and computational complexity
结理论和计算复杂性
  • 批准号:
    572776-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10.9万
  • 项目类别:
    University Undergraduate Student Research Awards
Computational complexity of combinatorial problems: graph homomorphisms, packings, and good characterizations
组合问题的计算复杂性:图同态、打包和良好的表征
  • 批准号:
    RGPIN-2014-04760
  • 财政年份:
    2021
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Discovery Grants Program - Individual
Taut foliations, representations, and the computational complexity of knot genus
结属的拉紧叶状、表示和计算复杂性
  • 批准号:
    EP/T016582/2
  • 财政年份:
    2021
  • 资助金额:
    $ 10.9万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了