Hybrid Physics-Neural Network Soft Sensors for Dynamic Operation of Liquid-Liquid Separation Processes
用于液-液分离过程动态操作的混合物理-神经网络软传感器
基本信息
- 批准号:466656378
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to explore the potential of physics-informed neural networks for inferring poorly measurable conditions from liquid-liquid separation processes for which mechanistic descriptions are only partially available. As specific example, we investigate a horizontal, continuously operated gravity settler for the separation of liquid-liquid dispersions, a common low-energy separation unit in chemical, biotechnological, and recycling processes, whose dynamic operation cannot be described solely on the basis of mechanistic models. We aim to develop a reliable soft sensor for the dispersion layer height, i.e., the principal separation performance indicator in the settler, by combining machine learning with mechanistic modeling through physics-based regularization. To generate training data, we will operate a gravity settler on a technical scale in a closed-loop continuous mode that allows to vary and measure operating conditions, material system, dispersion, and phase separation parameters. We will compare the hybrid physics-neural network to a fully data-driven benchmark, e.g., a recurrent neural network, to validate our expectation that the hybrid model requires less training data, generalizes better, and makes more physically-consistent predictions. A demonstration of the hybrid soft sensor in control and an assessment of model validity range will conclude the work. Our project addresses three central challenges defined in the SPP 2331, namely, the introduction of physical laws in ML models, optimal decision making, and increasing trust in ML applications.
这个项目的目标是探索物理信息神经网络的潜力,从液液分离过程中推断出难以测量的条件,而液液分离过程的机械描述只有部分可用。作为具体的例子,我们研究了用于液-液分散分离的卧式、连续操作的重力沉淀器,这是化学、生物技术和回收过程中常见的低能分离装置,其动态操作不能仅基于力学模型来描述。我们的目标是通过基于物理的正则化,将机器学习和机械建模相结合,开发一种可靠的分散层高度软测量,即沉降器中主要的分离性能指标。为了生成训练数据,我们将在技术规模上以闭环连续模式操作重力沉淀器,该模式允许改变和测量操作条件、物料系统、分散和相分离参数。我们将把混合物理-神经网络与完全数据驱动的基准(例如,递归神经网络)进行比较,以验证我们的期望,即混合模型需要更少的训练数据,更好地泛化,并做出更一致的物理预测。混合软测量在控制中的演示和模型有效性范围的评估将结束工作。我们的项目解决了SPP 2331中定义的三个核心挑战,即在ML模型中引入物理定律、优化决策和增加对ML应用程序的信任。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr.-Ing. Manuel Dahmen其他文献
Dr.-Ing. Manuel Dahmen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
A New Tsunami Model Using Physics-Informed Neural Networks (PINNs) for Real-Time Tsunami Simulation
使用物理信息神经网络 (PINN) 进行实时海啸模拟的新海啸模型
- 批准号:
24K08013 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311087 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311086 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Elements: Enabling Particle and Nuclear Physics Discoveries with Neural Deconvolution
合作研究:元素:通过神经反卷积实现粒子和核物理发现
- 批准号:
2311667 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Graph Neural Networks for High Energy Physics
高能物理的图神经网络
- 批准号:
2869973 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




