Engineering of a Synthetic Metabolic Pathway for the Carbon-Conserving Production of Value-Added Compounds from Ethylene Glycol

从乙二醇中节约碳生产增值化合物的合成代谢途径工程

基本信息

项目摘要

Due to growing environmental concerns, the development of biochemical processes for efficient utilization of carbon dioxide (CO2) for the production of value-added chemicals receives growing attention. Current technologies rely on (electro-)chemical reduction of CO2 to synthesis gas, formate or methanol, all of which can serve as substrates in microbial production processes. At present, methanol is the most popular C1-carbon substrate for use in fermentation processes. However, the implementation and optimization of methanol assimilation pathways in genetically amenable microorganisms is hampered by the fact that they overlap in large part with the natural metabolism of the host organisms. This makes it difficult to assure proper carbon flux repartitioning between regenerating a formaldehyde-accepting molecule, typically ribulose monophosphate or glycine, and diverting captured carbon towards the product. Addressing this problem, a synthetic metabolic pathway has recently been described which converts methanol to acetyl-CoA via the characteristic intermediate glycolaldehyde (GA). GA is directly produced from two molecules of formaldehyde, thus, elegantly by-passing the need of regenerating a formaldehyde-accepting molecule. With the present project proposal, we are putting forward the idea of extending the panel of synthetic metabolic pathways emanating from GA. Specifically, we propose a carbon-conserving synthetic metabolic pathway which converts GA into the four-carbon compound 2-oxo-4-hydroxybutyric acid from which several value-added products including threonine and 2,4-dihydroxybutyric acid can be derived. The synthetic pathway is composed of four enzymatic activities, out of which two have not been previously described and shall be engineered in this project. Although the proposed pathway is entirely compatible with the use of methanol, we shall demonstrate the function of the pathway using ethylene glycol (EG) as the substrate. The technological advantages of using EG instead of methanol are discussed in the project description.
由于对环境的日益关注,开发有效利用二氧化碳(CO2)生产增值化学品的生化工艺受到越来越多的关注。目前的技术依赖于(电)化学还原二氧化碳为合成气、甲酸盐或甲醇,所有这些都可以作为微生物生产过程的底物。目前,甲醇是发酵过程中最常用的碳一碳底物。然而,在可遗传的微生物中,甲醇同化途径的实施和优化受到了阻碍,因为它们在很大程度上与宿主生物的自然新陈代谢重叠。这使得在再生接受甲醛的分子(通常是核酮糖一磷酸或甘氨酸)和将捕获的碳转移到产品中之间,很难确保适当的碳通量重新分配。为了解决这个问题,最近描述了一种合成代谢途径,它通过特有的中间体乙醇醛(GA)将甲醇转化为乙酰辅酶A。GA是由两个甲醛分子直接产生的,因此,优雅地绕过了重新生成接受甲醛的分子的需要。在目前的项目提案中,我们提出了扩大GA合成代谢途径小组的想法。具体地说,我们提出了一种碳守恒的合成代谢途径,将GA转化为四碳化合物2-氧代-4-羟基丁酸,由此可以衍生出包括苏氨酸和2,4-二羟基丁酸在内的几种附加值产品。合成途径由四种酶活性组成,其中两种以前没有描述过,将在这个项目中进行工程设计。虽然所提出的途径与甲醇的使用完全兼容,但我们将演示以乙二醇(EG)为底物的途径的功能。在项目介绍中,论述了用乙二醇代替甲醇的技术优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Thomas Walther其他文献

Professor Dr.-Ing. Thomas Walther的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Thomas Walther', 18)}}的其他基金

Construction of a Synthetic Metabolic Pathway for the Carbon-Conserving Biosynthesis of Value-Added Products from Ethylene Glycol and Glycolaldehyde
乙二醇和乙醇醛增值产品节碳生物合成的合成代谢途径的构建
  • 批准号:
    413016763
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Untersuchung der hierarchischen Kontrollstruktur des zentralen Karbonstoffwechsels
中心碳代谢分级控制结构的研究
  • 批准号:
    5454608
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

Enzyme engineering to protect unstable metabolic intermediates in synthetic pathways
酶工程保护合成途径中不稳定的代谢中间体
  • 批准号:
    24K17829
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
  • 批准号:
    2320104
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Synthetic lethal metabolic drug combinations for castration-resistant prostate cancer
治疗去势抵抗性前列腺癌的合成致死代谢药物组合
  • 批准号:
    10661960
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
BII-Design: Using Synthetic Biology to Discover Cross-Kingdom Metabolic Rules of Life
BII-Design:利用合成生物学发现跨领域的生命代谢规则
  • 批准号:
    2320270
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Metabolic Engineering and Synthetic Biology approaches for sustainable and efficient production of carotenoids in yeast
在酵母中可持续高效生产类胡萝卜素的代谢工程和合成生物学方法
  • 批准号:
    576220-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
A synthetic metabolic network based on RNA modification for biological homeostasis
基于 RNA 修饰的合成代谢网络用于生物稳态
  • 批准号:
    22H02813
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
BII-Design: Using Synthetic Biology to Discover Cross-Kingdom Metabolic Rules of Life
BII-Design:利用合成生物学发现跨领域的生命代谢规则
  • 批准号:
    2021573
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Synthetic metabolic exchange for enhanced sustainability of agriculture
合成代谢交换增强农业的可持续性
  • 批准号:
    2501895
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Creating a microbial synthetic biosystem to build a complex heterologous metabolic pathway
创建微生物合成生物系统以构建复杂的异源代谢途径
  • 批准号:
    551620-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
BBSRC-NSF/BIO: Understanding the origin and evolution of metabolic interactions using synthetic microbial communities
BBSRC-NSF/BIO:利用合成微生物群落了解代谢相互作用的起源和进化
  • 批准号:
    1917258
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了