The neural computation for perceptual filling-in
感知填充的神经计算
基本信息
- 批准号:468434407
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Filling-in is the perceptual tendency of an observer to perceive a continuous visual pattern despite the presence of an intermittent blank region. Filling-in occurs at the blindspot but also in scotomatous regions in patients with diseases of the visual pathways. Since filling-in occurs in a blank region there is no physical stimulus to elicit a response in any visual mechanisms at that retinotopic location. Observers are usually requested on a given trial to report when they experience filling-in. Neural responses to stimuli with and without filling-in can be compared to determine whether these responses differ on these two trial types. Machine learning can be applied to determine if a classifier can distinguish between these two types of events. With univariate analysis, we found no difference between BOLD activation in the filling-in and no filling-in trials. However, using a leave-one-out training procedure and a support vector machine, it was possible to classify the percepts by the activation pattern differences in early visual cortex (Lin, Greenlee & Chen, 2020). To resolve these issues, we have developed a new paradigm to assess the presence or absence of perceptual filling-in. Observers will be presented periodic patterns with intermittent blank regions, which serve as artificial scotoma. By presenting a target in the blank region after filling-in occurs we can measure the neural response to the target and determine whether this response is affected by the presence of filling-in. The target will be a stimulus that can elicit a large enough neural response to allow for a reliable measurement of neural activity. We will vary the contrast of the target to determine the contrast response function in the presence of the inducer. This allows us to determine the contrast response function to the target. Variations in the physical properties of the inducers and targets will be conducted to separate response components related to the inducer and target stimuli.In a series of three studies, we will parametrically measure the response functions to the target with functional magnetic resonance imaging (fMRI), event related potentials (ERP) and psychophysics experiments. The latter will be conducted to establish the operating range of the basic phenomena. The fMRI experiments will precisely identify the brain areas for filling-in. Such precision is required as the candidate area for filling-in, V2, is small. The ERP experiments will determine the temporal dynamics of the target response with respect to the onset of filling-in. The filling-in phenomenon will be related to other illusions involving border contrast.The results of these studies will be simulated using a computational model of early visual processing. In these models, lateral inhibition and excitation influence the neural mechanisms that respond selectively to target stimuli. In this way, we will be able to develop a new theory of perceptual filling-in using computational modelling.
填充是观察者感知连续视觉模式的感知倾向,尽管存在间歇性空白区域。填充发生在盲点处,但也发生在患有视觉通路疾病的患者的暗点区域。 由于填充发生在空白区域,因此在该视网膜定位位置处没有物理刺激来引起任何视觉机制的反应。通常要求观察员在特定试验中报告他们何时进行填充。可以比较对具有和不具有填充的刺激的神经反应,以确定这些反应在这两种试验类型上是否不同。可以应用机器学习来确定分类器是否可以区分这两种类型的事件。通过单变量分析,我们发现BOLD激活在填充试验和无填充试验中没有差异。然而,使用留一法训练程序和支持向量机,可以通过早期视觉皮层中的激活模式差异对感知进行分类(Lin,Greenlee & Chen,2020)。为了解决这些问题,我们开发了一种新的范式来评估知觉填充的存在或不存在。将向观察者呈现具有间歇性空白区域的周期性图案,其用作人工暗点。通过在填充发生后在空白区域呈现目标,我们可以测量对目标的神经反应,并确定这种反应是否受到填充的影响。目标将是一个刺激,可以引起足够大的神经反应,以允许可靠的测量神经活动。我们将改变目标的对比度,以确定诱导剂存在下的对比度响应函数。这使我们能够确定目标的对比度响应函数。通过改变诱导物和靶物的物理性质,分离诱导物和靶物刺激的反应成分,并通过功能磁共振成像(fMRI)、事件相关电位(ERP)和心理物理学实验,对靶物刺激的反应功能进行参数化测量。后者将被用来建立基本现象的操作范围。功能磁共振成像实验将精确地识别大脑区域进行填充。由于用于填充的候选区域V2很小,所以需要这样的精度。ERP实验将确定目标反应相对于填充开始的时间动态。填补现象将与其他涉及边界对比的错觉有关。这些研究的结果将使用早期视觉处理的计算模型进行模拟。在这些模型中,侧抑制和兴奋影响选择性地响应目标刺激的神经机制。通过这种方式,我们将能够开发一个新的理论,知觉填充使用计算建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Mark Greenlee其他文献
Professor Dr. Mark Greenlee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Mark Greenlee', 18)}}的其他基金
Neuronale Korrelate kortikaler Reorganistion bei Patienten mit Makuladegeneration
黄斑变性患者皮质重组的神经相关性
- 批准号:
83105185 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Units
Integration auditiv-visueller Reizinformation
听觉视觉刺激信息整合
- 批准号:
98592732 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
fMRT- und MR-spektroskopische Untersuchungen neuronaler Grundlagen exekutiver Funktionen bei Kindern mit ADHS
ADHD 儿童执行功能神经元基础的功能磁共振成像和磁共振波谱研究
- 批准号:
5414567 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Priority Programmes
Multisensory Perception of Self Motion: Psychophysics and Functional Neuroanatomy
自我运动的多感官知觉:心理物理学和功能神经解剖学
- 批准号:
409032223 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
面向MANET的密钥管理关键技术研究
- 批准号:61173188
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于安全多方计算的抗强制电子选举协议研究
- 批准号:60773114
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
- 批准号:
2400056 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
- 批准号:
2339193 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
- 批准号:
2340095 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036867/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
- 批准号:
DE240100846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




