Probabilistic Modeling of Long-term Peatland Carbon Dynamics
长期泥炭地碳动力学的概率模型
基本信息
- 批准号:468648567
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Peatlands regulate atmospheric greenhouse gas concentrations and thus the global climate. They form one of the largest terrestrial C stores and current and projected long-term shifts in temperature, precipitation, and nitrogen deposition represent a potential threat to these functions. Dynamic peatland models (DPM) are needed to acquire a mechanistic understanding of process interactions, to predict long-term changes in C accumulation rates, and to synthesize contrasting results of individual studies. For about 40 years DPM have continuously been improved by including additional processes, temporal dynamics, and spatial heterogeneity. Sensitivity analyses of DPM have revealed that uncertainties are generally large yet crucial for a correct interpretation of process interactions. In other disciplines, the application of probabilistic models, uncertainty analysis, and uncertainty reduction via data assimilation has proven useful extensions of former deterministic models. However, uncertainty has barely been quantified and analyzed for probabilistic DPM. To make DPM more useful, we suggest to develop a probabilistic DPM and to quantify, analyze, and reduce uncertainties in its input data and parameters, using uncertainty analysis and data assimilation. We expect that data assimilation can reduce uncertainties especially for long-term decomposition rates if one synthesizes different existing data sources (peat core data and litter bag data) and the information provided by multiple peat properties at the same time (e.g. C and N content). With this framework, we aim to assess the impact uncertainties have for our understanding of the effects of temperature, precipitation, and nitrogen deposition on peatland C accumulation, identify conditions under which experiments yield contrasting results, and provide strategies for efficient future uncertainty reduction in DPM.
泥炭地调节大气中温室气体的浓度,从而调节全球气候。它们形成了最大的陆地碳库之一,目前和预计的温度、降水和氮沉降的长期变化对这些功能构成了潜在威胁。动态泥炭地模型(ESTA)需要获得一个机械的理解过程中的相互作用,预测碳积累率的长期变化,并综合对比结果的个别研究。大约40年来,通过包括额外的过程、时间动态和空间异质性来不断改进。敏感性分析的结果表明,不确定性一般都很大,但过程相互作用的正确解释至关重要。在其他学科中,概率模型、不确定性分析和通过数据同化减少不确定性的应用已经证明是对以前确定性模型的有益扩展。然而,不确定性几乎没有被量化和分析的概率分布。为了使可预测性更有用,我们建议开发一个概率可预测性和量化,分析,并减少其输入数据和参数的不确定性,使用不确定性分析和数据同化。我们预计,数据同化可以减少不确定性,特别是长期分解率,如果一个综合不同的现有数据源(泥炭芯数据和垃圾袋数据)和多个泥炭属性在同一时间(如C和N含量)提供的信息。有了这个框架,我们的目标是评估影响的不确定性,我们的理解的温度,降水和氮沉降对泥炭地碳积累的影响,确定实验条件下产生对比结果,并提供有效的未来不确定性减少的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Klaus-Holger Knorr其他文献
Professor Dr. Klaus-Holger Knorr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Klaus-Holger Knorr', 18)}}的其他基金
Is higher silicon availability increasing the mineralization of organic matter in fen peatlands?
较高的硅利用率是否会增加沼泽泥炭地有机质的矿化?
- 批准号:
327633020 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Solid and dissolved organic matter redox properties as controls of anaerobic Respiration in organic soils
固体和溶解有机物的氧化还原特性作为有机土壤中厌氧呼吸的控制
- 批准号:
346018319 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Factors controlling the release of dissolved organic substances, their stability and impact in methanogenic inundated fens soils
控制溶解有机物质释放的因素、其稳定性以及在产甲烷淹没沼泽土壤中的影响
- 批准号:
239984262 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Coupling and competitiveness of iron-, sulfate-, and CO2-reduction along gradients
铁、硫酸盐和二氧化碳沿梯度还原的耦合和竞争性
- 批准号:
124911023 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
Restoring peatlands of the nemoral zone under conditions of varying water supply and quality
在不同供水和质量的条件下恢复内穆带泥炭地
- 批准号:
491288730 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
E=OC^2 – Energy resolves Organic Carbon Complexity in anoxic waters
E=OC^2 â 能量解决缺氧水中的有机碳复杂性
- 批准号:
505956695 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Redox induced mobilisation of DOC from riparian wetlands (ReDOCs)
氧化还原诱导河岸湿地 DOC 的动员 (ReDOC)
- 批准号:
502259606 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Integrative risk modeling for early prediction of endometriosis and its long-term health outcomes
子宫内膜异位症早期预测及其长期健康结果的综合风险模型
- 批准号:
10567234 - 财政年份:2023
- 资助金额:
-- - 项目类别:
DMS/NIGMS 1: Multiscale modeling of Notch signaling during long-range lateral inhibition
DMS/NIGMS 1:长程侧向抑制期间 Notch 信号传导的多尺度建模
- 批准号:
10797357 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SCC-IRG Track 2: Equitable-Access Flood Modeling for Timely and Just Adaptation in the Near and Long Term
SCC-IRG 第 2 轨道:公平访问洪水建模,以实现近期和长期的及时、公正的适应
- 批准号:
2305476 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Developing a next-level computational modeling framework to predict the long-term performance of old buildings
开发下一级计算建模框架来预测旧建筑的长期性能
- 批准号:
576903-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Mechanical performance modeling and failure prediction of Fiber Reinforced Additively Manufactured (FRAM) composites under static, dynamic, cyclic, and long-term loading conditions
静态、动态、循环和长期负载条件下纤维增强增材制造 (FRAM) 复合材料的机械性能建模和失效预测
- 批准号:
RGPIN-2021-03053 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Impact of Post-COVID-19 Condition on the Canadian healthcare workforce: An agent-based modeling approach informed by living evidence syntheses to project long-term impacts on worker recovery and retention
COVID-19 后状况对加拿大医疗保健劳动力的影响:基于代理的建模方法,通过活体证据综合来预测对工人康复和保留的长期影响
- 批准号:
475223 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Operating Grants
Modeling Long-distance Intercity Passenger Travel in the Global Multi-modal System
全球多式联运系统中长途城际旅客出行建模
- 批准号:
RGPIN-2021-03179 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Modeling Long-Term Urban and Rural Settlement Dynamics
长期城乡住区动态建模
- 批准号:
2204149 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship Award
Estimating the value and long-term impact of implementing Risk Mitigation Guidance to reduce the harms of substance use disorders during the COVID-19 pandemic: A simulation modeling analysis
评估在 COVID-19 大流行期间实施风险缓解指南以减少物质使用障碍的危害的价值和长期影响:模拟建模分析
- 批准号:
445791 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Operating Grants