Statistical Inverse Problem and its Applications to Complex Systems

统计反问题及其在复杂系统中的应用

基本信息

  • 批准号:
    14580346
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

In this research statistical inverse problem on complex systems such as brain functions or engineering plants is examined by using the identification method based on feedback system theory. Since the localization of brain activities was well understood in the last century, activities of associated regions in brain are interested for understanding of higher order brain functions, i.e., language, recognition, vision activities, in the present century.At the beginning of research, it seemed to be difficult to attack such topics for time series data of magnetoencephalography (MEG), since there are many parallel processing of activities in brain. However, repeated electrical or sound stimuli give periodical activities in brain, and they are called by the evoked magnetic field. Then, we could separate particular evoked magnetic fields from background magnetic fields of brain by using the independent component analysis based on temporal structure. One example is the auditory evoked field, and the other is the somatosensory evoked field. After selection of evoked MEG we can examine dynamics included in MEG time series data by the identification method based on feedback system theory. That is, transfer functions between observable channels were identified, and their impulse responses were obtained. They give us dynamics between regions of brains. The Gaussianity in the framework of the method was important to obtain the stationarity of time series data, since it is observed in not only MEG data but also fluctuations of neutron number of nuclear power plants.
本研究以回馈系统理论为基础,探讨脑功能或工程植物等复杂系统的统计逆问题。由于在上个世纪对脑活动的定位有了很好的理解,因此脑中相关区域的活动对于理解更高级的脑功能感兴趣,即,语言、认知、视觉等活动的研究是世纪的一个重要课题,在研究之初,脑磁图(magnetoencephalography,MEG)的时间序列数据似乎很难解决这些问题,因为大脑中存在着许多并行的活动处理过程。然而,重复的电刺激或声音刺激会使大脑产生周期性的活动,这些活动被称为诱发磁场。然后,利用基于时间结构的独立分量分析方法,将特定的脑诱发磁场从脑背景磁场中分离出来。一个例子是听觉诱发场,另一个是体感诱发场。在选择诱发脑磁图后,我们可以通过基于反馈系统理论的辨识方法来检测脑磁图时间序列数据中包含的动力学。也就是说,可观测通道之间的传递函数被识别,并获得它们的脉冲响应。它们给我们大脑区域之间的动力。在该方法的框架中的高斯性是重要的,以获得平稳的时间序列数据,因为它是观察到的不仅MEG数据,但也波动的中子数的核电厂。

项目成果

期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistical Inverse Problem in Feedback System and Diagnosis of Feedback Paths
反馈系统中的统计反问题及反馈路径诊断
Blind Identification of Brain Dynamics in MEG
MEG 中大脑动态的盲识别
Effective Elimination of Power Supply Noise from MEG Data using Blind Source Separation
使用盲源分离有效消除 MEG 数据中的电源噪声
Blind Identification of SEF Dynamics from MEG Data by Using Decorrelation Method of ICA
ICA去相关法从MEG数据中盲辨识SEF动态
Kuniharu Kishida: "Identification of Transfer Functions and Statistical Inverse Problems"Progress in Nuclear Energy. 43. 297-303 (2003)
Kuniharu Kishida:“传递函数的识别和统计反问题”核能进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KISHIDA Kuniharu其他文献

KISHIDA Kuniharu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KISHIDA Kuniharu', 18)}}的其他基金

Study on statistical inverse problem and its diagnostic application to megnetoencephalography
统计反问题研究及其在脑磁图诊断中的应用
  • 批准号:
    19500237
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic inverse problems on identification of feedback system
反馈系统辨识的随机反问题
  • 批准号:
    08680329
  • 财政年份:
    1996
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on reactor diagnosis based on a new system identification method
基于新系统辨识方法的反应堆诊断研究
  • 批准号:
    03808026
  • 财政年份:
    1991
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Reconstruction of time variable distributions in statistical inverse problems (C04)
统计反问题中时间变量分布的重构(C04)
  • 批准号:
    140576213
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Collaborative Research Centres
Statistical Inverse Problems, Semiparametric Models, and Empirical Processes
统计反问题、半参数模型和经验过程
  • 批准号:
    0503822
  • 财政年份:
    2005
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
Statistical inverse problems on Riemannian manifolds
黎曼流形上的统计反问题
  • 批准号:
    46204-2001
  • 财政年份:
    2004
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inverse problems on Riemannian manifolds
黎曼流形上的统计反问题
  • 批准号:
    46204-2001
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inverse problems on Riemannian manifolds
黎曼流形上的统计反问题
  • 批准号:
    46204-2001
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Inverse Problems and Point Process Methods in Combinatorics
组合数学中的统计反问题和点过程方法
  • 批准号:
    0203320
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Statistical inverse problems on Riemannian manifolds
黎曼流形上的统计反问题
  • 批准号:
    46204-2001
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inverse problems on Riemannian manifolds
黎曼流形上的统计反问题
  • 批准号:
    46204-1997
  • 财政年份:
    2000
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inverse problems on Riemannian manifolds
黎曼流形上的统计反问题
  • 批准号:
    46204-1997
  • 财政年份:
    1999
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inverse problems on Riemannian manifolds
黎曼流形上的统计反问题
  • 批准号:
    46204-1997
  • 财政年份:
    1998
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了