Research on reactor diagnosis based on a new system identification method

基于新系统辨识方法的反应堆诊断研究

基本信息

  • 批准号:
    03808026
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1993
  • 项目状态:
    已结题

项目摘要

On sysytem identification with multivariate time series data in the reactor noise, it is necessary to examine properties of innovation models systematically. Coefficient matrices of a data-oriented innovation model have been determined by using the singular value decomposition of Hankel matrix of which the elements are correlation functions, and properties of its conservation quantities such as poles and zeros have been examined. Furthermore, effects of observation noise to zeros of innovation model have been examined, and summarized as rules.Since the nuclear reactor is a system with thermal and hydro-dynamical feedback mechanics, it is necessary to examine relations between closed loop transfer functions and open loop transfer functions describing feedback loops. Since the relationship between both transfer functions is a nonlinear transformation, poles and zeros of the fitted model are not conserved in general. It has been reported that there is a possibility of pole-zero cancellati … More on in a fitted time series model.Along the line of above studies it has been recognized that there exists a stable particular solution of Riccati equation, which appears in the formulation of the innovation model. The investigation of existence of the stable particular solution brings us to know that the condition of atable solution is satisfied if zeros of feedback system are invertible. If a reactor is of minimun phase (of which zeros are invertible), the Riccati equation has a stable solution under the condition, and open loop transfer functions can be identified theoretically. Otherwise, there appears an additional equivalent loop in the feedback system, and then the additional loop makes difficulty in system identification of open loop transfer functions.Although the key model in the formulation is an equivalent innovation model, its representation is not unique. The transformation from one representation to the other has been studied. Corresponding Riccati equations are also examined, and properties and relationship between Riccati equations have been made clear. Less
在反应器噪声中多变量时间序列数据的系统辨识中,有必要系统地考察创新模型的性质。利用以关联函数为元素的Hankel矩阵的奇异值分解确定了面向数据的创新模型的系数矩阵,并考察了其极点和零点等守恒量的性质。此外,还考察了观测噪声对创新模型零点的影响,并将其归纳为规则。由于核反应堆是一个具有热动力和流体动力反馈力学的系统,因此有必要研究描述反馈回路的闭环传递函数和开环传递函数之间的关系。由于两个传递函数之间的关系是一种非线性变换,因此拟合模型的极点和零点一般不守恒。据报道,在拟合的时间序列模型中,存在极零抵消的可能性。通过以上研究,我们认识到Riccati方程存在一个稳定的特解,这个特解出现在创新模型的表述中。研究了稳定特解的存在性,得到了反馈系统零点可逆时满足表解的条件。当电抗器为最小相时(零可逆),Riccati方程在此条件下有稳定解,理论上可以识别出开环传递函数。否则,反馈系统中会出现一个附加的等效环,这个附加环给系统的开环传递函数辨识带来困难。虽然公式中的关键模型是等效创新模型,但其表现形式并不独特。研究了从一种表示到另一种表示的转换。研究了相应的里卡第方程,明确了里卡第方程的性质和相互关系。少

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kuniharu Kishida: "Observation Noise and Zero Loci of Time Series Model." IEEE Transactions on Signal Processing.
Kuniharu Kishida:“时间序列模型的观测噪声和零轨迹”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kuniharu Kishida: "Can we observe open loop transfer function in a stochastic feedback system?" Proceedings of the 1st JSME/ASME Joint International Conference on Nuclear Engineering. 2. 149-154 (1991)
Kuniharu Kishida:“我们可以在随机反馈系统中观察开环传递函数吗?”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kuniharu Kishida: "Observation noise and zero loci of a time series model" IEEE Transactions on Signal Processing. 41. 2269-2273 (1993)
Kuniharu Kishida:“时间序列模型的观察噪声和零位点”IEEE 信号处理汇刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kuniharu Kishida: "Observation noise and zero loci of a time series model" IEEE Transactions on Signal Processing.41. 2269-2273 (1993)
Kuniharu Kishida:“时间序列模型的观察噪声和零位点”IEEE Transactions on Signal Processing.41。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
岸田 邦治: "工学システムにオケルイノベ-ションモデルと時系列解析 伝達関数表現について" 統計数理.
Kuniharu Kishida:“工程系统的Oker创新模型和时间序列分析:关于传递函数表示”统计数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KISHIDA Kuniharu其他文献

KISHIDA Kuniharu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KISHIDA Kuniharu', 18)}}的其他基金

Study on statistical inverse problem and its diagnostic application to megnetoencephalography
统计反问题研究及其在脑磁图诊断中的应用
  • 批准号:
    19500237
  • 财政年份:
    2007
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Inverse Problem and its Applications to Complex Systems
统计反问题及其在复杂系统中的应用
  • 批准号:
    14580346
  • 财政年份:
    2002
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic inverse problems on identification of feedback system
反馈系统辨识的随机反问题
  • 批准号:
    08680329
  • 财政年份:
    1996
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
  • 批准号:
    23K17336
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
  • 批准号:
    23KK0049
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
3D tracking system for micro magnetization vector realized by inverse problem algorithm
反问题算法实现的微磁化矢量3D跟踪系统
  • 批准号:
    22K04246
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on inverse problem analysis of viscoelastic equations
粘弹性方程反问题分析研究
  • 批准号:
    22K03366
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2111039
  • 财政年份:
    2021
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Development of typhoon ensemble forecasting system based on the source inverse problem of potential vorticity
基于位涡源反问题的台风集合预报系统研制
  • 批准号:
    21H01431
  • 财政年份:
    2021
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2110833
  • 财政年份:
    2021
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
  • 批准号:
    20H02484
  • 财政年份:
    2020
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simultaneous characterization of near-field nanoplasmonic structure and function using super-resolved far-field optics: Solving the Inverse Problem
使用超分辨远场光学同时表征近场纳米等离子体结构和功能:解决反演问题
  • 批准号:
    1808766
  • 财政年份:
    2018
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Development of high-efficiency calculation method for solving inverse problem and singular value decomposition for each local area in image restoration processing
图像恢复处理中求解逆问题和各局部区域奇异值分解的高效计算方法的开发
  • 批准号:
    18K11351
  • 财政年份:
    2018
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了