Research for practical use of fast algorithms for computer algebra and software development
计算机代数和软件开发快速算法的实际应用研究
基本信息
- 批准号:14580365
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall subject of this project is the investigation of an appropriate method for practical use of asymptotically fast algorithms for computer algebra and the development of efficient software, with major emphasis upon the basic operations. More concretely, adopting vectors and matrices as a computing target, we developed efficient software, by making use of various algorithms and programming techniques. First, we investigated the Strassen-type fast algorithm for matrix multiplication, to clarify the conditions and the reason of its fastness. Even with detailed analysis done by counting the number of arithmetic operations, the incredible fastness revealed in some cases cannot be explained completely, however, we noticed instead that computing time is closely related with space complexity. As an experience rule, we have learnt that the fast algorithm takes effect if the multiplication of matrix elements is much costlier than the additive operations, and additive operations do not ch … More ange the sparseness of the expressions and therefore their cost for multiplication. Modular arithmetics is a typical example of this kind. Our experiment strengthened the necessity, we have long been aware of, for the development of efficient library of basic linear operations, like BIAS, for modular arithmetics, which would have a wide variety of applications. Our second topic is the development of this software, called MBLAS. We defined a set of subroutines for linear algebra, in analogy with BLAS, and designed an appropriate interface for various applications, including the application to dense univariate polynomial arithmetics. With modular arithmetics, removal of division is a key to speed-up, especially for the case of matrix or vector operations. We have explored several techniques for speedup, such as use of tables, conversionof division by multiplication, use of overflow as a manageable value. Also, we experimented vector processing, using short-vector SIMD instructions for streaming data. Our extensive empirical study indicated that the effect of these techniques heavily depends on the hardware specification. One more knowledge we have obtained is the fact that the fast matrix-multiplication algorithm is not suited for sparse matrices. This is true even with matrix representation tailored for sparse matrices. Throughout this experiment, we noticed that the use of array for vectors and matrices is of almost no effect, as far as symbolic computation is concerned. Investigation of appropriate matrix representation has become the third subject in our project and is left for a topic of future study.Another investigator developed some high-level algorithms and realized efficient software for algebraic computation, besides the maintenance and the improvement of a computer algebra system Risa/Asir as a chief development staff. His work includes the continuous effort for improving the Groebner-basis package, development of algorithm and realization for factorization of multivariate polynomials over finite fields, and modular method for dynamic evaluation. Less
该项目的总体主题是用于实际使用计算机代数的不对称快速算法和开发有效软件的适当方法,重点是基本操作。更具体地说,采用向量和物品作为计算目标,我们通过使用各种算法和编程技术开发了有效的软件。首先,我们研究了用于矩阵乘法的strassen型快速算法,以阐明其牢度的条件和原因。即使通过计算算术操作的数量来进行详细的分析,在某些情况下揭示的令人难以置信的牢度也无法完全解释,但是,我们注意到计算时间与空间复杂性密切相关。作为经验规则,我们了解到,如果矩阵元素的乘法比附加的操作更为昂贵,并且加法操作不可能……更多的是表达式的稀疏性以及它们的乘法成本,那么快速算法就会生效。模块化算术是这种典型的例子。我们的实验增强了必要的特性,我们长期以来一直意识到,用于开发有效的基本线性操作库,例如偏见,用于模块化算术,这些算术将具有多种应用。我们的第二个主题是该软件的开发,称为MBLA。我们用Blas类似地定义了一组线性代数的子例程,并为各种应用设计了适当的接口,包括应用于密集的单变量多项式算术的应用。使用模块化算术,去除分裂是加速的关键,尤其是对于矩阵或向量操作的情况。我们已经探索了几种用于加速的技术,例如使用表,通过乘法来转换除法,将溢出用作可管理的值。此外,我们使用短矢量SIMD指令进行了流数据,我们尝试了矢量处理。我们广泛的实证研究表明,这些技术的效果在很大程度上取决于硬件规范。我们获得的另一个知识是,快速基质 - 培养算法不适合稀疏材料。即使是针对稀疏材料量身定制的矩阵表示,也是如此。通过该实验,就符号计算而言,将阵列用于向量和材料几乎没有影响。对适当的矩阵表示的调查已成为我们项目中的第三个主题,并留给未来的研究主题。另一位研究人员开发了一些高级算法,并实现了代数计算的有效软件,除了维护和改进计算机代数系统RISA/ASIR作为首席开发人员。他的工作包括不断提高Groebner-BASIS软件包的努力,算法的开发以及实现有限领域的多元多项式分解的实现,以及用于动态评估的模块化方法。较少的
项目成果
期刊论文数量(154)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Noro, K.Yokoyama: "Implementation of Prime Decomposition of Polynomial Ideals over Small Finite Fields"Journal of Symbolic Computation. (to appear).
M.Noro、K.Yokoyama:“小有限域上多项式理想素数分解的实现”符号计算杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
村尾 裕一: "ωビット消去による拡張GCD問題の解法-逆元計算の一高速化手法-"応用数理学会論文誌. 12巻4号. 281-292 (2002)
Yuichi Murao:“通过 ω 位消除解决扩展 GCD 问题 - 一种加速逆计算的方法 -”日本应用数学学会汇刊,第 12 卷,第 4 期。281-292(2002 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Murao, S.Ohshima, H.Kobayashi: "Experimental Theorem Database System for Mechanizing Ring Theory"International Congress of Mathematical Software 2002, poster. (2002)
H.Murao、S.Ohshima、H.Kobayashi:“机械化环理论的实验定理数据库系统”2002 年国际数学软件大会,海报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MURAO Hirokazu其他文献
MURAO Hirokazu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MURAO Hirokazu', 18)}}的其他基金
Research on data-parallel integer processing with high-precision and high-performance
高精度高性能数据并行整数处理研究
- 批准号:
26330144 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on multi-core oriented parallel algorithms and implementation techniques for seminumerical processing
面向多核的半数值处理并行算法及实现技术研究
- 批准号:
22500011 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Vector and Parallel Processing of Computer Algebra Algorithms and Distributed and Cooperative Processing
计算机代数算法向量并行处理及分布式协同处理研究
- 批准号:
07680337 - 财政年份:1995
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer Algebra and Supercomputing
计算机代数和超级计算
- 批准号:
05680266 - 财政年份:1993
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Research on Vector and Parallel Processing of Computer Algebra Algorithms and Distributed and Cooperative Processing
计算机代数算法向量并行处理及分布式协同处理研究
- 批准号:
07680337 - 财政年份:1995
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)