Research on Numerical Methods for Large-Scale Nonlinear Optimization Problems and their Applications to Software Codes
大规模非线性优化问题的数值方法及其在软件代码中的应用研究
基本信息
- 批准号:16510123
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied numerical methods for solving unconstrained and constrained optimization problems. Specifically, we have done the following.(1) We have proposed new nonlinear conjugate gradient methods based on the modified secant and the multi-step secant conditions for solving large-scale unconstrained optimization problems. We have proved their global convergence properties. Our numerical experiments show that our proposed methods perform well.(2) We have proposed a new memory gradient method for solving large-scale unconstrained optimization problems. We have proved their global convergence properties. Our numerical experiments show that our proposed method performs well.(3) We have combined the limited memory quasi-Newton method, which was proposed by us, and the primal-dual interior point method to solve nonlinearly constrained optimization problems.(4) We have analyzed local behavior of the primal-dual interior point method for degenerate nonlinear optimization problems.(5) We have proposed primal-dual interior point methods for solving nonlinear second-order cone programming and nonlinear semidefinite programming problems. We have proved their global convergence properties by using primal-dual merit function within the framework of the line search strategy.(6) We have proved the local and q-superlinear convergence of the quasi-Newton method with the Broyden family based on the modified secant condition for solving unconstrained optimization problems.(7) We have dealt with the Barzilai-Borwein method to improve numerical performance of the steepest descent method, and we have proposed the extended Barzilai-Borwein method.
我们研究了求解无约束和约束优化问题的数值方法。具体而言,我们做了以下工作。(1)基于修正割线和多步割线条件,提出了求解大规模无约束优化问题的新的非线性共轭梯度法。我们证明了它们的全局收敛性。我们的数值实验表明,我们提出的方法表现良好。(2)提出了一种新的求解大规模无约束优化问题的记忆梯度法。我们证明了它们的全局收敛性。我们的数值实验表明,我们提出的方法表现良好。(3)将我们提出的有限记忆拟牛顿法与原对偶内点法结合起来求解非线性约束优化问题。(4)研究了退化非线性优化问题原对偶内点方法的局部性态。(5)我们提出了求解非线性二阶锥规划和非线性半定规划问题的原始-对偶内点方法。在线性搜索策略的框架下,利用原对偶价值函数证明了它们的全局收敛性。(6)本文证明了求解无约束优化问题的基于修正割线条件的Broyden族拟牛顿法的局部收敛性和q-超线性收敛性。(7)为了改善最速下降法的数值性能,我们研究了Barzilai-Borwein方法,并提出了扩展的Barzilai-Borwein方法。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
制約付大規模最適化問題に対する主双対内点法について
大规模约束优化问题的原对偶内点法
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Y.Narushima;H.Yabe;鈴木 康司
- 通讯作者:鈴木 康司
A primal–dual interior point method for nonlinear semidefinite programming
- DOI:10.1007/s10107-011-0449-z
- 发表时间:2011-03
- 期刊:
- 影响因子:2.7
- 作者:Hiroshi Yamashita;H. Yabe;K. Harada
- 通讯作者:Hiroshi Yamashita;H. Yabe;K. Harada
Nonlinear conjugate gradient methods based on the multiple-step secant condition for unconstrained minimization
基于多步割线条件的非线性共轭梯度无约束最小化方法
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:H.Yabe;H.Ogasawara;M.Yoshino;Yasushi Narushima;Yasushi Narushima
- 通讯作者:Yasushi Narushima
Global Convergence of a Memory Gradient Method for Unconstrained Optimization
- DOI:10.1007/s10589-006-8719-z
- 发表时间:2006-11
- 期刊:
- 影响因子:2.2
- 作者:Yasushi Narushima;H. Yabe
- 通讯作者:Yasushi Narushima;H. Yabe
Global Convergence Properties of Nonlinear Conjugate Gradient Methods with Modified Secant Condition
- DOI:10.1023/b:coap.0000026885.81997.88
- 发表时间:2004-07
- 期刊:
- 影响因子:2.2
- 作者:H. Yabe;M. Takano
- 通讯作者:H. Yabe;M. Takano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YABE Hiroshi其他文献
YABE Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YABE Hiroshi', 18)}}的其他基金
Study on numerical methods for optimization problems in social system and their implementation
社会系统优化问题的数值方法研究及其实现
- 批准号:
21510164 - 财政年份:2009
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Precision Design of Externally Pressurized Gas-Lubricated Bearing and Guide Way
外压气体润滑轴承及导轨精密设计研究
- 批准号:
07650174 - 财政年份:1995
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on sliding accuracy and precision design of externally pressurized gas-lubricated linear guide way
外压气体润滑直线导轨滑动精度及精度设计研究
- 批准号:
04650131 - 财政年份:1992
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Research on Run-Out Characteristics of an Externally Pressurized Gas-Lubricated Journal Bearing
外压气体润滑轴颈轴承跳动特性研究
- 批准号:
01550115 - 财政年份:1989
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Cooperative two-level nonlinear programming through particle swarm optimization and its fuzzy stochastic extensions
通过粒子群优化及其模糊随机扩展的协同两级非线性规划
- 批准号:
16K01244 - 财政年份:2016
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formulation of discrete nonlinear programming
离散非线性规划的表述
- 批准号:
16K05278 - 财政年份:2016
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Nonlinear Programming Paradigm for Hybrid Elements Formulation Towards High-Performance Collapse Simulations
面向高性能塌陷模拟的混合单元公式非线性编程范式
- 批准号:
1634575 - 财政年份:2016
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Numerical Verification Method for Solutions of Nonlinear Programming Problems
非线性规划问题解的数值验证方法
- 批准号:
26870646 - 财政年份:2014
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
CAREER: Parallel Nonlinear Programming Techniques for Optimization in Rapid Therapeutics Manufacturing
职业:用于快速治疗制造优化的并行非线性编程技术
- 批准号:
1418972 - 财政年份:2014
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Treatment of degeneracy and preconditioning in nonlinear programming
非线性规划中简并性和预处理的处理
- 批准号:
299010-2009 - 财政年份:2013
- 资助金额:
$ 1.98万 - 项目类别:
Discovery Grants Program - Individual
Global multiobjective nonlinear programming through particle swarm optimization and its extensions in fuzzy stochastic environment
基于粒子群优化的全局多目标非线性规划及其在模糊随机环境中的扩展
- 批准号:
24710167 - 财政年份:2012
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Treatment of degeneracy and preconditioning in nonlinear programming
非线性规划中简并性和预处理的处理
- 批准号:
299010-2009 - 财政年份:2012
- 资助金额:
$ 1.98万 - 项目类别:
Discovery Grants Program - Individual
Integration of nonlinear control, nonlinear programming and methods of numerically solving ordinary differential equations.
非线性控制、非线性规划和常微分方程数值求解方法的集成。
- 批准号:
23560535 - 财政年份:2011
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear programming algorithms and applications
非线性规划算法及应用
- 批准号:
389095-2010 - 财政年份:2011
- 资助金额:
$ 1.98万 - 项目类别:
Postgraduate Scholarships - Doctoral