Transition to turbulence and unstable nonlinear magnetohydrodynamic flow states in ducts with a transverse magnetic field
具有横向磁场的管道中向湍流和不稳定非线性磁流体动力流状态的转变
基本信息
- 批准号:470628784
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Transition to turbulence is important in various flow systems. Upon increasing the Reynolds number Re, it typically occurs sub-critically in wall-bounded flows, i.e. irrespective of an instability of the laminar flow state. The transition is typically interpreted in the framework of dynamical systems theory. A flow state is regarded as a point in the phase space of possible flow states. Laminar and turbulent flow have different basins of attraction that are separated by a hypersurface (edge of chaos). On this surface the flow develops neither towards the laminar nor towards the turbulent state, but to an attractor within the surface that is called the edge state. During transition to turbulence, the flow may first reach the vicinity of the edge state before it eventually becomes turbulent. Edge states correspond to non-trivial time-dependent flows that have simpler dynamics than turbulent solutions. They can therefore serve as models for studyingthe physical mechanisms of transition. Edge states can, e.g., correspond to wave-like, time-periodic or chaotic solutions. They were studied in detail for a number of prototypical shear flows, but have hardly ever been considered for magnetohydrodynamic (MHD) flows although transition in these flows is also sub-critical. In MHD flows, the Hartmann number Ha appears as a second parameter for the magnetic field in addition to the Reynolds number as a dimensionless parameter for the velocity. In the project, the route to turbulence and the mechanisms of transition in MHD duct flows will be determined that are largely unknown. The specific configurations to be studied are flows in ducts with rectangular cross-section and transversal homogeneous magnetic field. These flows are three-dimensional and characterized by boundary layers on the walls parallel and perpendicular to the magnetic field that are calledShercliff and Hartmann layers, respectively. The flows will be investigated by highly resolved direct numerical simulations (DNS) and stability analysis. First, the boundary between laminar and turbulent states will be determined in the Re-Ha-A-parameter space, where A is theperturbation amplitude of the initial state. In the second step, edge states will be determined by DNS and their dynamics and specific properties will be analyzed. In the third step, the bifurcations of flow states upon changing of Re and Ha will be investigated that give rise to edge states. By that one can also obtain a better understanding why transition is determined by a parameter that is based on the thickness of the Hartmann layers although turbulence appears first in the Shercliff layers. Our results are relevant for electromagnetic flow control in metallurgical and heat transfer applications with conducting liquids.
在各种流动系统中,向湍流的过渡是很重要的。当雷诺数Re增加时,它通常发生在有壁面的流动中,即不考虑层流状态的不稳定性。这种转变通常用动力系统理论的框架来解释。流态被看作是可能流态相空间中的一个点。层流和湍流有不同的吸引盆地,它们被一个超表面(混沌边缘)分开。在这个表面上,流动既不向层流状态发展,也不向湍流状态发展,而是向表面内的一个吸引子发展,这个吸引子被称为边缘状态。在向湍流过渡的过程中,流动可能首先到达边缘状态附近,然后最终成为湍流。边缘状态对应于非平凡的时变流,它比湍流解具有更简单的动力学。因此,它们可以作为研究过渡物理机制的模型。例如,边缘状态可以对应于类波解、时间周期解或混沌解。它们在许多原型剪切流中进行了详细的研究,但很少考虑磁流体动力学(MHD)流动,尽管这些流动中的转捩也是亚临界的。在MHD流动中,除了雷诺数作为速度的无量纲参数外,哈特曼数Ha作为磁场的第二个参数出现。在该项目中,将确定MHD管道流动的湍流路径和过渡机制,这在很大程度上是未知的。所要研究的具体形态是具有矩形截面和横向均匀磁场的管道中的流动。这些流动是三维的,其特征是壁面上平行和垂直于磁场的边界层,分别被称为shercliff层和Hartmann层。流动将通过高分辨率直接数值模拟(DNS)和稳定性分析进行研究。首先,在re - ha -A参数空间中确定层流和湍流状态的边界,其中A为初始状态的扰动幅度。在第二步中,边缘状态将由DNS确定,并分析其动态和特定属性。在第三步中,将研究Re和Ha变化时流动状态的分岔,从而产生边缘状态。由此,人们也可以更好地理解为什么过渡是由一个基于哈特曼层厚度的参数决定的,尽管湍流首先出现在Shercliff层中。我们的研究结果对冶金和导热流体的电磁流动控制具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Thomas Boeck其他文献
Privatdozent Dr. Thomas Boeck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Privatdozent Dr. Thomas Boeck', 18)}}的其他基金
A combined experimental and numerical approach to study the hierarchy of multiscale structures arising from the stationary solutal Marangoni instability
实验和数值相结合的方法来研究由静止溶质马兰戈尼不稳定性引起的多尺度结构的层次结构
- 批准号:
167363687 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Experimentelle und numerische Untersuchungen des Übergangs zur Turbulenz in einem Ringkanal mit wandparallelem axialem Magnetfeld
轴向磁场平行于壁的环形通道中湍流转变的实验和数值研究
- 批准号:
106802666 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Klärung der Einflüsse einer zeitlich veränderlichen Wärmequelle auf die Schmelzbaddynamik und auf die Erstarrung
阐明时变热源对熔池动力学和凝固的影响
- 批准号:
26906965 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
Instabilität von Zweiphasenscherströmungen und Simulation sowie prädiktive magnetische Beeinflussung von Konvektion
两相剪切流的不稳定性和模拟以及对对流的预测磁影响
- 批准号:
5347235 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
CISM-Kurs "Liquid Metal Magnetohydrodynamics"
CISM课程“液态金属磁流体动力学”
- 批准号:
5199880 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
流体湍流运动的相关数学分析
- 批准号:10971174
- 批准年份:2009
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Characterizing Transition to Turbulence in Pulsatile Pipe Flow
表征脉动管流中的湍流转变
- 批准号:
2335760 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
- 批准号:
2414424 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding Pulsatile Helical Flow: Scaling, Turbulence, and Helicity Control
了解脉动螺旋流:缩放、湍流和螺旋度控制
- 批准号:
2342517 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Characterization of Turbulence in Urban Environments for Wind Hazard Mitigation
职业:城市环境湍流特征以减轻风灾
- 批准号:
2340755 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
- 批准号:
EP/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
- 批准号:
2412025 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




