Study on integral convex polytopes and toric varieties

积分凸多面体和复曲面簇的研究

基本信息

  • 批准号:
    16540004
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

Ogata studied about ideals defining projective toric varieties. We say the ideal satisfies the property (Np) if its free resolution is the simplest up to the degree p part. We obtained a best possible estimate of this p with respect to the dimension of the variety and the times of tensor product of the same ample line bundle. We also obtained an algebro-geometric proof of the Theorem of Fakhruddin, which states that any global section of Ample bundle multiplied by a nef bundle is a nultiple of sections of the ample bundle and the nef bundle. Next we proved that an ample line bundle on a nonsingular toric 3-fold is normally generated if the bundle after added with the twice of the canonical bundle has no global sections. As a consequence, we showed that the anti-canonical bundle on nonsingular toric Fano 4-fold is normally generated.Ishida studied about completion of real fans by using the notion of Zariski-Riemann spaces. We also determined the moduli number of CCI surfaces which are defined by Hirotaka Ishida.Hara studied about isolated singularities of dimension two in positive characteristic. We define the F-pure threshold ftp(X, D) for a pair of a surface and an effective divisor which is an analog of the logarithmic canonical threshold. And we showed that ftp(X, D) has values in rational numbers by using the method of p-fractal.Kajiwara studied abuot the relation between tropical geometry and toric geometry. We characterized degenerations of projective toric varieties defined from polyhedral decompositions which are determined naturally by tropical hypersurfaces.We also reconstructed tropical toric varieties in terms of algebraic geometry. As a consequence, we obtainedWe also reconstructed tropical toric varieties in terms of algebraic geometry. As a consequence, we obtained an intersection theory on tropical nonsingular toric surfaces.
绪方研究理想定义投射环面品种。我们说理想满足性质(Np),如果它的自由分解是最简单的,直到次数p部分。我们得到了这个p关于簇的维数和同一样本线丛的张量积的次数的一个可能的最佳估计。我们还得到了Fakhruddin定理的一个代数几何证明,该定理指出:Ample丛的任何整体截面乘以nef丛都是Ample丛和nef丛的截面的倍数。其次,证明了非奇异环面3-fold上的一个充分线丛是正规生成的,如果这个丛加上规范丛的两倍后没有整体截面。Ishida利用Zerkiki-Riemann空间的概念研究了真实的fans的完备化。我们还确定了Hirotaka Ishida定义的CCI曲面的模数。Hara研究了具有正特征的二维孤立奇异性。我们定义了一对曲面和一个有效因子的F-pure阈值ftp(X,D),它是对数正则阈值的模拟。Kajiwara研究了热带几何与复曲面几何之间的关系,并利用p-分形方法证明了ftp(X,D)的值为有理数。我们刻画了由热带超曲面自然决定的多面体分解所定义的投射环面簇的退化,并从代数几何的角度重建了热带环面簇.作为结果,我们得到我们还重建热带环面品种的代数几何。作为结果,我们得到了热带非奇异复曲面的交理论。

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a generalization of test ideals
关于测试理想的概括
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    浅沼照雄;S.M.Bhatwadekar;小野田信春;尾形 庄悦;原 伸生;S.Ogata;S.Ogata;T.Kajiwara;石田 正典;石田正典;尾形 庄悦;原 伸生;S.Ogata;N.Hara;尾形庄悦;尾形庄悦;原 伸生;原 伸生
  • 通讯作者:
    原 伸生
k-normality of weighted projective spaces
加权射影空间的 k-正态性
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juergen Herzog;Yukihide Takayama;Naoki Terai;H.Katsurada;Mutsumi Amasaki;H.Katsurada;H. Katsurada;Shoetsu Ogata
  • 通讯作者:
    Shoetsu Ogata
K-normality of weighted progective spaces
加权预期空间的 K-正态性
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    浅沼照雄;S.M.Bhatwadekar;小野田信春;尾形 庄悦;原 伸生;S.Ogata;S.Ogata;T.Kajiwara;石田 正典;石田正典;尾形 庄悦;原 伸生;S.Ogata;N.Hara;尾形庄悦;尾形庄悦
  • 通讯作者:
    尾形庄悦
Abelian surfaces in projective 4-folds
四重投影的阿贝尔曲面
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G.Ewald;M.Ishida;T.Kajiwara
  • 通讯作者:
    T.Kajiwara
Completion of real fans and Zariski-Riemann spaces
  • DOI:
    10.2748/tmj/1156256400
  • 发表时间:
    2006-06
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    G. Ewald;Masanori Ishida
  • 通讯作者:
    G. Ewald;Masanori Ishida
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OGATA Shoetsu其他文献

OGATA Shoetsu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OGATA Shoetsu', 18)}}的其他基金

Study on toric Fano varieties and Calabi-Yau hypersurfaces
环面Fano簇和Calabi-Yau超曲面研究
  • 批准号:
    26400034
  • 财政年份:
    2014
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Minkowski sums of lattice polytoped and toric varieties
格子多面簇和环面簇的闵可夫斯基和的研究
  • 批准号:
    23540038
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on equivariant mapps of toric varieties and vector bundles
复曲面簇和向量丛的等变映射研究
  • 批准号:
    19540003
  • 财政年份:
    2007
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on toric varieties, vector bundles on them and their subvarieties
复曲面簇及其矢量丛及其亚簇的研究
  • 批准号:
    11640005
  • 财政年份:
    1999
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了