Construction of exotic homology manifolds and generalization of Quinn index

奇异同调流形的构建和 Quinn 指数的推广

基本信息

  • 批准号:
    16540064
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

By SP^n(X) we denote the n-fold symmetric product of a topological space X. We have investigated the problem what kind of n-dimensional compact metric spaces can be embedded into the n-fold symmetric product SP^n(X) of a one-dimensional continuum X. Our result is the following :Theorem 1. The n-dimensional sphere S^n cannot be embedded into the n-fold symmetric product of any one-dimensional continuum X.In order to prove Theorem we have calculated the n-dimensional cohomology group of the bouquet of the 1-sphere S^1. In fact, we showed that the n-fold symmetric product of the bouquet of the 1-sphere S^1 can be embedded into the Cartesian product of the n-fold symmetric products of 1-sphere S^1. Moreover the embedding image is the retract of the product space. Therefore we can calculate cohomology group of the symmetric product as follows :Theorem 2. H^n(SP^n(vS^1)) is isomorphic to the direct sum of the n-dimensional cohomology groups of the n-dimensional tori.Theorem 1 follows from Theorem 1 by Dydak-Koyama(Bull. Polish Academy of Sciences, 2000, 48(1), 51-56).We have another notion of symmetric products. Namely, for a topological space X let F_n(X) be the set of all nonempty subsets of X whose cardinalities are at most n. We often call F_n(X) endowed the Hausdorff metric the n-fold symmetric product of X. In general, F_2n(X) is equal to SP^2(X), but if n > 2, F_n(X) is different from SP^n(X). However, as those product have similarities, we have the same problem what kind of n-dimensional compact metric spaces can be embedded into the n-fold symmetric product F_n(X) of a one-dimensional continuum X. As a folhlore we know Borsuk-Bott Theorem: F_3(S^1) is isomorphic to the 3-dimensional sphere S^3. We also investigate this theorem and give a modern proof and a generalizations.
我们用SP^n(X)表示拓扑空间X的n次对称积,研究了一维连续体X的n次对称积SP^n(X)中可以嵌入什么样的n维紧化度量空间的问题。n维球面S^n不能嵌入到任何一维连续统x的n折对称积中。为了证明定理,我们计算了1维球面S^1束的n维上同群。事实上,我们证明了1球S^1的束的n次对称积可以嵌入到1球S^1的n次对称积的笛卡尔积中。嵌入图像是产品空间的缩回。因此,我们可以计算对称积的上同群:定理2。H^n(SP^n(vS^1))同构于n维环面的n维上同调群的直和。定理1是从dyak - koyama的定理1推导出来的。波兰科学院,2000,48(1),51-56。我们有另一个对称积的概念。即,对于一个拓扑空间X,设F_n(X)为X的所有非空子集的集合,其个数不超过n。我们通常称F_n(X)为赋予Hausdorff度规的X的n倍对称积。一般情况下,F_n(X)等于SP^2(X),但如果n > 2, F_n(X)不同于SP^n(X)。然而,由于这些乘积具有相似性,我们又遇到了同样的问题,即一维连续体X的n次对称乘积F_n(X)中可以嵌入什么样的n维紧化度量空间。由此我们知道Borsuk-Bott定理:F_3(S^1)与三维球面S^3同构。我们也研究了这个定理,并给出了一个现代的证明和推广。

项目成果

期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Homotopy types of the components of spaces of embeddings of compact polyhedra into 2-manifolds
紧多面体嵌入2-流形的空间分量的同伦类型
There is no upper bound of small transfinite compactness degree in metrizable spaces
可度量空间中不存在小超限紧度的上限
Recent development of cohomological dimension theory-Existence and applications of Edwards-Walsh resolutions
上同调维数论的最新进展-Edwards-Walsh解析的存在与应用
The behavior of dimension functions on unions of closed subsets
闭子集并集上维度函数的行为
Recent development of cohomological dimension theory - Existence and applications of Edwards-Walsh resolutions
上同调维数理论的最新进展——Edwards-Walsh解析的存在与应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOYAMA Akira其他文献

KOYAMA Akira的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOYAMA Akira', 18)}}的其他基金

Cohomological dimension theory in coarse geometry
粗几何中的上同调维数理论
  • 批准号:
    21540075
  • 财政年份:
    2009
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on cohomological dimension of topological spaces and one of Coxeter groups
拓扑空间的上同调维数及Coxeter群之一的研究
  • 批准号:
    14540077
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Cohomological dimension theory in coarse geometry
粗几何中的上同调维数理论
  • 批准号:
    21540075
  • 财政年份:
    2009
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on cohomological dimension of topological spaces and one of Coxeter groups
拓扑空间的上同调维数及Coxeter群之一的研究
  • 批准号:
    14540077
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Cohomological Dimension
数学科学:上同调维数
  • 批准号:
    9101283
  • 财政年份:
    1991
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了