Quantization of the Chem-Simons Gauge Theory on Four-manifolds
四流形上 Chem-Simons 规范理论的量化
基本信息
- 批准号:16540084
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The reporter of this note studied from the year 2004 to 2006 the quantization of the Chern-Simons gauge theory on four-manifolds, he gave the geometric quantization of the moduli space of connections on a four-manifolds generally with boundary. He gave a pre- symplectic structure on the moduli-space of connections. He constructed an hermitian line bundle with connection on the moduli space whose curvature is given by the pre-symplectic form. The transition function of the line bundle is described by the 5- dimensional Chern-Simons functional. On the space of connections there is a Hamiltonian action of the group of gauge transformations that are identity on the boundary, whose symplectic reduction becomes the space of flat connections, this is the geometric quantization of the space of flat connections. The mapping group from the boundary three-manifold to the structure Lie group acts infinitesimally symplectic way on this moduli space of flat connections, and the author showed that the abelian extension of the mapping group lifts the action to the quantium line bundle. The last extension was constructed by Mickelsson and extended by the author's previous research on four-dimensional Wess-Zumino-Witten theory. The results were submitted to a journal of differential geometry. After this research the reporter investigated also the quasi-symplectic structure on the space of flat connections on three- manifolds and the condition for a connection to be extended to the four-manifold that cobord the first one and decided the class of such connections. Other than these research the author investigated the vortex representation of the Hamilton-Yang-Mills equation and the relation of it to the helicity of Hamiltonian flows.
本文作者从2004年到2006年研究了四流形上的chen - simons规范理论的量子化,给出了一般有边界的四流形上的连接模空间的几何量子化。他在连接的模空间上给出了一个预辛结构。他在模空间上构造了一个带连接的厄米线束,其曲率由前辛形式给出。线束的跃迁函数用5维陈-西蒙斯泛函来描述。在连接空间上存在边界上恒等的规范变换群的哈密顿作用,其辛约化成为平坦连接空间,这就是平坦连接空间的几何量化。从边界三流形到结构李群的映射群在平面连接模空间上以无限辛的方式作用,并证明了映射群的阿贝尔扩展将这种作用提升到量子线束。最后一个扩展是由Mickelsson构建的,并由作者之前对四维Wess-Zumino-Witten理论的研究进行了扩展。研究结果发表在一本微分几何杂志上。在此基础上,还研究了三流形平面连接空间上的拟辛结构,以及一种连接扩展到与第一种连接相连的四流形的条件,并确定了这种连接的类别。除此之外,作者还研究了哈密顿-杨-米尔斯方程的涡表示及其与哈密顿流螺旋度的关系。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yang-Mills方程式のハミルトン形式とHelicity
Yang-Mills 方程的哈密顿形式和螺旋度
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Kiyohara;J.Itoh;郡 敏昭
- 通讯作者:郡 敏昭
Yang-Mills 方程式のハミルトン形式
Yang-Mills 方程的哈密顿形式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:X.Chen;M.Fukushima;Yoshiyuki Ohyama;Masayo Fujimura;M. Yamasaki;Masayuki Yamasaki;山崎 正之;山崎 正之;Masayuki Yamasaki;山崎 正之;Masayuki Yamasaki;Kiyoko Nishizawa;T.Kori;郡 敏昭
- 通讯作者:郡 敏昭
Hamiltonian formalism of Yang-Mills equation : vortex formula.
Yang-Mills 方程的哈密顿形式主义:涡旋公式。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Anderson;A.Katsuda 他(計5名);郡 敏昭;K.Kiyohara;T.Kori;T.Kori
- 通讯作者:T.Kori
Cohomology Groups of Harmonic Spinors on Conformally Flat Manifolds
- DOI:10.1007/978-3-0348-7838-8_11
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tosiaki Kori
- 通讯作者:Tosiaki Kori
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KORI Toshiaki其他文献
KORI Toshiaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KORI Toshiaki', 18)}}的其他基金
Geometry of the space of Yang-Mills connections and its dual.
杨-米尔斯连接空间的几何及其对偶。
- 批准号:
19540104 - 财政年份:2007
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Boundary conditions for gavge coupled Dirac operators and their invariants.
强耦合狄拉克算子的边界条件及其不变量。
- 批准号:
09640134 - 财政年份:1997
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
The Quantization of the Moduli Space of Flat Connections on a Surface
曲面上平面连接模空间的量化
- 批准号:
0604694 - 财政年份:2006
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
On the cohomology group of the moduli space of flat connections over a compact nonorientable surface
紧致不可定向曲面上平面连接模空间的上同调群
- 批准号:
301087-2004 - 财政年份:2005
- 资助金额:
$ 1.98万 - 项目类别:
Postdoctoral Fellowships
On the cohomology group of the moduli space of flat connections over a compact nonorientable surface
紧致不可定向曲面上平面连接模空间的上同调群
- 批准号:
301087-2004 - 财政年份:2004
- 资助金额:
$ 1.98万 - 项目类别:
Postdoctoral Fellowships