Geometry of the space of Yang-Mills connections and its dual.
杨-米尔斯连接空间的几何及其对偶。
基本信息
- 批准号:19540104
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2009
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) The moduli space of flat connections on four manifolds is given a pre-symplectic structure. And a geometric pre-quantization of this space is constructed. When the 4-manifold has the boundary the gauge transformation group on the boundary acts on the moduli space infinitesimally symplectically. This actionlifts to the pre-quantization equivariantly. (2) The Lie group extension of SU(n)-current group was constructed by J. Mickelsson for n bigger than 3. The similar construction for the SU(2)-current group had not been solved. I have constructed two kind of Lie group extensions of SU(2)-current group. (There exist actually two types of extensions.) (1) and (2) were the subjects of former research, but here stated results are improved ones and given the final form. (3) One of the purpose of this research is to construct a general frame work of the dual spaces of the space of connections and the transformation on it so that one can see transparently the "Zakharov-Shabat method for integrable systems". For that we constructed the theory of residue and duality on the solution space of gauge-coupled Dirac operators that may describe the behaqvior of the solutions near their singular points. As an application we arranged in a clear form the ADHM construction of solitons.
(1)给出了四流形上平坦联络的模空间的准辛结构。并构造了该空间的几何预量子化。当四维流形有边界时,边界上的规范变换群无穷小辛地作用在模空间上。该作用等变地提升到预量化。(2)J. Mickelsson构造了SU(n)-流群的李群扩张,其中n大于3。SU(2)-流群的类似构造一直没有解决。构造了SU(2)-流群的两种李群扩张。(实际上有两种类型的扩展。(1)(2)是前人研究的对象,但本文所述结果是改进的结果,并给出了最终形式。(3)本文研究的目的之一是建立联络空间的对偶空间及其上的变换的一般框架,从而使“可积系统的Zakharov-Shabat方法”变得透明。为此,我们在规范耦合Dirac算子的解空间上建立了留数和对偶理论,可以描述其奇点附近解的性质。作为应用,我们以一种清晰的形式安排了孤子的自洽介质结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Map(S^-3,G)の可環拡大の4次元多様体上の接続の幾何的量子化束への作用について
论Map(S^-3,G)的环形延伸对4维流形上几何量化连接丛的影响
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:J. P. Brasselet;J. Schurmann and S. Yokura;郡 敏昭
- 通讯作者:郡 敏昭
3次元多様体上の\(SU(N)\)平坦接続の空間の\\幾何的準量子化について
3维流形上(SU(N))平面连接空间的几何准量化
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:J. P. Brasselet;J. Schurmann and S. Yokura;郡 敏昭;小櫃邦夫;郡敏昭
- 通讯作者:郡敏昭
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KORI Toshiaki其他文献
KORI Toshiaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KORI Toshiaki', 18)}}的其他基金
Quantization of the Chem-Simons Gauge Theory on Four-manifolds
四流形上 Chem-Simons 规范理论的量化
- 批准号:
16540084 - 财政年份:2004
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Boundary conditions for gavge coupled Dirac operators and their invariants.
强耦合狄拉克算子的边界条件及其不变量。
- 批准号:
09640134 - 财政年份:1997
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Quantization of Geometry: A trial for the construction of non-commutative field theory
几何量化:非交换场论构建的一次尝试
- 批准号:
25610015 - 财政年份:2013
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Riemann面上の平坦接続のモジュライ空間の幾何的量子化と写像類群の表現
黎曼曲面上平面连接模空间的几何量化及映射类群的表示
- 批准号:
06J11101 - 财政年份:2006
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows