Web geometry, geometry of surfaces with codimension 2 and their applications to singularity theory
网络几何、余维 2 表面几何及其在奇点理论中的应用
基本信息
- 批准号:16540090
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Geometry of surfaces with codimension 2 in 4-spaceIn this research we have investigated singularities for the asymptotic lines of generic surfaces with codimension 2 around isolated inflection points in 4-spaces. The singularities corresponds to singularities of certain class of binary differential equations. In this case the simple singularities is of type Dl, D2, D3. Also appear more degenerated singularities, which is called type D23. We give the phase portrait of type D23.2. Linearization of web structureA configurations of functions with isolated singularities gives a web structure. It seems that a finite determined theory in singularity theory is useful to study linearization problem of webs.
1.本文研究了四维空间中余维为2的一般曲面在孤立拐点附近的渐近线的奇异性。这些奇点对应于某类二元微分方程的奇点。在这种情况下,简单奇点的类型为D1、D2、D3。也出现了更多的退化奇点,称为D23型。我们给出了D23.2型的相图。网络结构的线性化具有孤立奇点的函数的配置给出了网络结构。由此可见,奇异性理论中的有限确定性理论对于研究腹板的线性化问题是有用的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Singularities of differential equations of asymptotic lines on surfaces in 4-space
4-空间曲面上渐近线微分方程的奇异性
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:後藤ミドリ;石川普;糸川銚;Yasuhiro Kurokawa
- 通讯作者:Yasuhiro Kurokawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUROKAWA Yasuhiro其他文献
KUROKAWA Yasuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Revisiting Wallach's Rule: Approaches toward singular point interplaying molecular symmetries and electronic properties
重温瓦拉赫法则:研究奇点相互作用的分子对称性和电子特性的方法
- 批准号:
22H00314 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of a movable singular point of a Hamiltonian system and Borel summability
哈密顿系统可动奇点及Borel可求和性研究
- 批准号:
20K03683 - 财政年份:2020
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of sound source separation method focusing on the singular point in spatio-temporal spectrum
时空谱奇异点声源分离方法研究进展
- 批准号:
19K04408 - 财政年份:2019
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of non-commutative geometry, singular point, and geometric asymptotics
非交换几何、奇点、几何渐进研究
- 批准号:
22540095 - 财政年份:2010
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic and Geometry of Irregular Singular Point Connections
不规则奇点连接的算术和几何
- 批准号:
0103765 - 财政年份:2001
- 资助金额:
$ 1.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Reduction of Systems of Linear Differential Equations at a Singular Point
数学科学:奇点处线性微分方程组的约简
- 批准号:
8300573 - 财政年份:1983
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Reduction of Systems of Linear Differential Equations at a Singular Point
奇点处线性微分方程组的约化
- 批准号:
7901198 - 财政年份:1979
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Reduction of Systems of Linear Differential Equations at a Singular Point
奇点处线性微分方程组的约化
- 批准号:
7700112 - 财政年份:1977
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
REDUCTION OF SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS AT A SINGULAR POINT
奇点处线性微分方程组的约简
- 批准号:
7354029 - 财政年份:1973
- 资助金额:
$ 1.79万 - 项目类别:
Reduction of Systems of Linear Differential Equations at a Singular Point
奇点处线性微分方程组的约化
- 批准号:
7102698 - 财政年份:1971
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant