Investigation of Inverse Problems for the Heat equation Based on the Theory of Stochastic Control

基于随机控制理论的热方程反问题研究

基本信息

  • 批准号:
    16540100
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

We study the inverse problem determining the shape of some unknown portion of the boundary of a domain based on parabolic equations and also study the one determining the heat conduction coefficients of a heat equation based on the theory of stochastic control. The former is treated through a suitably linearized equation by analytical method. The shape of deforming unknown portion is allowed depending on time and is assumed only to be Lipschitz continuous. The latter provides us with a new type of stochastic control. That is, the running cost is driven by the local time at the measurement place with respect to the controlled diffusion process. Therefore the corresponding HJB equation has singular source term involving the Dirac function supported on the measurement place.In the framework of stochastic control, we also consider some jump process concerned with common property resource and obtain an optimal control variable under suitable conditions.Related to the subject, we need to study some property of systems of orthogonal functions. In particular, the classical Hardy's inequality is extended to the case of Jacobi series and the boundedness of the transplantation operators and Cesaro operators are obtained.Finally, from a viewpoint of numerical analysis, we study some random sequences. An ultradiscrete dynamical system is constructed under consideration of discretized Markov transforms and bit error probabilities of certain communication systems are discussed by using spreading sequences of Markov chains.
研究了基于抛物型方程确定区域边界未知部分形状的反问题和基于随机控制理论确定热传导系数的反问题。前者用解析法通过适当线性化的方程来处理。变形未知部分的形状随时间变化是允许的,且仅假定为Lipschitz连续。后者为我们提供了一种新型的随机控制。也就是说,相对于受控扩散过程,运行成本由测量地点的当地时间驱动。在随机控制的框架下,我们还考虑了一些与公共属性资源有关的跳跃过程,并在适当的条件下得到了一个最优控制变量。与此相关,我们需要研究正交函数系的一些性质。特别地,将经典的Hardy不等式推广到Jacobi级数的情形,得到了移植算子和Cesaro算子的有界性。最后,从数值分析的角度研究了一些随机序列。在考虑离散化马尔可夫变换的情况下,构造了一个超离散动力系统,并利用马尔可夫链的扩展序列讨论了某些通信系统的误码率。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A transplantation theorem for the Hankel transform on Hardy space
Hardy空间上Hankel变换的移植定理
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Constantin;Peter;Ohkitani;Koji;Tadashi Takahashi;Y.Kanjin
  • 通讯作者:
    Y.Kanjin
Common property resource and private capital accumulation with random jumps
公共财产资源与随机跳跃的民间资本积累
HARDY'S INEQUALITY FOR JACOBI EXPANSIONS
Renewable common property resource and private capital accumulation
可再生的公共财产资源和私人资本积累
Discretized Markov transform-An example of ultradiscrete dynamical systems-
离散马尔可夫变换-超离散动力系统的一个例子-
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUCHIYA Masaaki其他文献

TSUCHIYA Masaaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUCHIYA Masaaki', 18)}}的其他基金

A Comprehensive Study of Daoist Mountain Worship and its Related Network of Religious Facilities
道教山崇拜及其相关宗教设施网络综合研究
  • 批准号:
    21320013
  • 财政年份:
    2009
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An anlytic approach to diffusion processes with second order Ventsel's boundary conditions and its applications
二阶Ventsel边界条件扩散过程的解析方法及其应用
  • 批准号:
    12640111
  • 财政年份:
    2000
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Perturbation of domain of diffusion processes with boundary conditions and its application to the boundary value problem
边界条件下扩散过程域的扰动及其在边值问题中的应用
  • 批准号:
    10640112
  • 财政年份:
    1998
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
  • 批准号:
    23K17336
  • 财政年份:
    2023
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
  • 批准号:
    23KK0049
  • 财政年份:
    2023
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
3D tracking system for micro magnetization vector realized by inverse problem algorithm
反问题算法实现的微磁化矢量3D跟踪系统
  • 批准号:
    22K04246
  • 财政年份:
    2022
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on inverse problem analysis of viscoelastic equations
粘弹性方程反问题分析研究
  • 批准号:
    22K03366
  • 财政年份:
    2022
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2111039
  • 财政年份:
    2021
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
Development of typhoon ensemble forecasting system based on the source inverse problem of potential vorticity
基于位涡源反问题的台风集合预报系统研制
  • 批准号:
    21H01431
  • 财政年份:
    2021
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2110833
  • 财政年份:
    2021
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
  • 批准号:
    20H02484
  • 财政年份:
    2020
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simultaneous characterization of near-field nanoplasmonic structure and function using super-resolved far-field optics: Solving the Inverse Problem
使用超分辨远场光学同时表征近场纳米等离子体结构和功能:解决反演问题
  • 批准号:
    1808766
  • 财政年份:
    2018
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
Development of high-efficiency calculation method for solving inverse problem and singular value decomposition for each local area in image restoration processing
图像恢复处理中求解逆问题和各局部区域奇异值分解的高效计算方法的开发
  • 批准号:
    18K11351
  • 财政年份:
    2018
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了