Classifications of commutative Banach algebras and Banach modules and its applications

交换Banach代数和Banach模的分类及其应用

基本信息

  • 批准号:
    16540135
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

In order to understand a subject, one sometimes tries to classify the objects in the subject. By this classification, one may learn the deep aspects of the subject. Thus classification is important for us. Here, classification means setting several conditions and considering the classes satisfying the conditions. In this research, the subject is a commutative Banach algebra or a Banach module, and the purpose is to explain the essence of them. Now we classify them. First we set the natural conditions on them and form the class satisfying the conditions. Next we consider whether the concrete algebra or module belongs to the class. We also investigate the common property of algebras and modules in the class. According to these ideas, we introduce the classes named BSE-algebra and BED-algebra. These are obtained by characterizing the Gelfand transformation image and and Helgason-Wang transformation image of commutative Banach algebras. Then the family of commutative Banach algebras can be … More classified in the following four cases : (I) BSE and BED, (II) BSE and not BED, (III) BED and not BSE, (IV) not BED and not BSE. In this research, we gave the following examples : (I) certain closed idals and quotients of group algebras, commutative C^*-algebras, disk algbera, Hardy algebra, a certain Lipschitz-algebra on the real line; (II) Segal algebras S_P(G), A_P(G) of noncompact LCA group G; (III) L^P-algberas on infinite dimensional compact abelian groups, e^1-algbera on infinite set, C_0(X;τ), A_τ; (IV) the derivation algebra C^1_0 (R) on R, the derivation algebra C^1([0,1]) on [0,1], measure algebras on nondiscrete LCA groups, a certain semigroup algebra. Moreover, we introduced a generalized Segal algbera and investigated functional analysis properties of it. Also we constructed concrete generalized Segal algebras A_<τ(n)>. Furthermore, we constructed the smallest isometrically homeomorphism-invariant Segal algbera in commutative Banach algberas. Especially, in the group algebra case, we characterized its multiplier algbera in terms of a certain local multiplier. As an application, we considered a Hyers-Ulam stability problem of derivation on Banach algebras and functional equations and inequalities on Banach spaces, and obtained many valuable results. Less
为了理解一个主题,人们有时试图对主题中的对象进行分类。通过这种分类,人们可以了解这个主题的深层方面。因此,分类对我们很重要。这里,分类意味着设置若干条件并考虑满足条件的类。本文以交换Banach代数或Banach模为研究对象,目的是解释它们的本质。现在我们把它们分类。首先,我们给它们设置自然条件,并形成满足这些条件的类。接下来我们考虑具体代数或模是否属于类。我们还研究了这类代数和模的共同性质。根据这些思想,我们引入了BSE-代数和BED-代数。通过刻画交换Banach代数的Gelfand变换象和Helgason-Wang变换象得到了这些结果。那么交换Banach代数族可以是 ...更多信息 分类为以下四种情况:(I)BSE和BED,(II)BSE和非BED,(III)BED和非BSE,(IV)非BED和非BSE。在本研究中,我们给出了以下例子:(I)群代数,交换C^*-代数,圆盘代数,哈代代数,真实的直线上的Lipschitz-代数的某些闭恒等式和闭代数;(II)非紧LCA群G的Segal代数S_P(G),A_P(G); τ),A_τ;(IV)R上的导子代数C^1_0(R),[0,1]上的导子代数C^1([0,1]),非离散LCA群上的测度代数,某个半群代数.引入了广义Segal代数,研究了它的泛函分析性质,并构造了具体的广义Segal代数A <τ(n)>.在此基础上,构造了交换Banach代数中最小的等距同胚不变Segal代数.特别地,在群代数的情况下,我们用某个局部乘子刻画了它的乘子代数a。作为应用,我们考虑了Banach代数上导子的Hyers-Ulam稳定性问题和Banach空间上函数方程和不等式的Hyers-Ulam稳定性问题,得到了许多有价值的结果。少

项目成果

期刊论文数量(239)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Triangle inequality on Banach space
Banach 空间上的三角不等式
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sin-Ei Takahasi;Takeshi Miura;Hiroyuki Takagi;Sin-Ei Takahasi
  • 通讯作者:
    Sin-Ei Takahasi
A perturbation of multipliers and its existence
乘数的摄动及其存在性
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takeshi Miura;Go Hirasawa;Sin-Ei Takahasi
  • 通讯作者:
    Sin-Ei Takahasi
The Hyers-Ulam stability of a weighted composition oprators on a uniform algebra
均匀代数上加权复合算子的 Hyers-Ulam 稳定性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki Takagi;Takeshi Miura;Sin-Ei Takahasi
  • 通讯作者:
    Sin-Ei Takahasi
Banach環上のJordan homomorphismとその安定性
Banach环上的Jordan同态及其稳定性
Competition Model
竞赛模型
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sin-Ei Takahasi;Yasuhide Miura;Takeshi Miura;Makoto Tsukada
  • 通讯作者:
    Makoto Tsukada
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAHASI Sin-Ei其他文献

TAKAHASI Sin-Ei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAHASI Sin-Ei', 18)}}的其他基金

Classifications of commutative Banach algebras and Banach modules and its applications
交换Banach代数和Banach模的分类及其应用
  • 批准号:
    19540159
  • 财政年份:
    2007
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classifications of commutative Banach algebras and Banach modules
交换 Banach 代数和 Banach 模的分类
  • 批准号:
    08640160
  • 财政年份:
    1996
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了