Classifications of commutative Banach algebras and Banach modules
交换 Banach 代数和 Banach 模的分类
基本信息
- 批准号:08640160
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classifications are based on setting several conditions and considering the classes to satisfy the conditions. This research has been focusing on clarifying the essence of commutative Banach algebras and Banach modules by the following idea : First, they would be classified according to the natural conditions settled, and then whether concrete algebras and modules belong to the classified groups or not, and what invariant properties the specific classified algebra and module have, might be investigated. Before this investigation, based on the above idea we have introduced and investigated the groups respective to BSE-algebras and BSE-Banach modules. In this investigation, we have introduced the new group of commutative Banach algebras named Doss-algebras and developed the general classification theory of the commutative Banach algebras. This general classification theory was based on newly introduced concept referred to quasi-topology. Then, whether the concrete commutative Banach algebras belong to the above two groups respective to the BSE-algebras and the Doss-algebras has been investigated. Furthermore, we have studied on the group of commutative Banach algebras such that the original norm coincides with the BSE-norm and on a certain group of BSE-Banach modules.We have also studied on the group of the commutative Banach algebras of which the greatest regular subalgebra coincides with the Apostol algebras and particularly it is found that the Douglas algebra belongs to such a group and has a certain decomposition based on the natural spectra. In the study of the function which operates on the function space related to the commutative Banach algebra, non-Lipschitz functions which operate or do not operate on non-trivial function space can be characterized successfully. Finally, we have investigated a structure of ring-homomorphism on the commutative Banach algebras, inequality and equality with respect to the Banach norm, and a BKW-operator.
分类基于设置若干条件并考虑满足条件的类。本研究的主要目的是澄清交换Banach代数和交换Banach模的本质:首先根据所满足的自然条件对它们进行分类,然后研究具体的代数和模是否属于所分类的群,以及所分类的代数和模具有什么样的不变性质。在此之前,基于上述思想,我们引入并研究了BSE-代数和BSE-Banach模的相应群。本文引入了一个新的交换Banach代数群Doss-代数,发展了交换Banach代数的一般分类理论。这种一般的分类理论是基于新引入的概念,称为准拓扑。然后,研究了具体的交换Banach代数是否属于BSE-代数和Doss-代数的上述两个群。此外,委员会认为,本文研究了原模与BSE-模重合的交换Banach代数群和BSE-模的某个交换Banach代数群。我们还研究了交换Banach代数的最大正则子代数与Apostol代数重合的群,特别是发现道格拉斯代数属于这样一个群,并且基于Apostol代数有一定的分解自然光谱在研究与交换Banach代数相关的函数空间上的函数时,可以成功地刻画出在非平凡函数空间上的非Lipschitz函数。最后,我们研究了交换Banach代数上的环同态结构,关于Banach范数的不等式和等式,以及BKW-算子。
项目成果
期刊论文数量(86)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sin-Ei Takahasi: "Jensen's inequality and its applications" Hokkaido Univ.Technical Report Series in Mathematics. 48. 66-68 (1997)
Sin-Ei Takahasi:“Jensen 不等式及其应用”北海道大学数学技术报告系列。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Osamu Hatori: "Measures with natural spectra on locally compact abelian groups" Proceeding of the Americal Mathematical Society.(to appear).
Osamu Hatori:“用自然谱对局部紧致阿贝尔群进行测量”美国数学会学报。(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Osamu Hatori: "Non-Lipschitz functions which operate on function spaces" Mathematica Japonica. (to appear).
Osamu Hatori:“在函数空间上运行的非 Lipschitz 函数” Mathematica Japonica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Osamu Hatori: "Shapiro-Shields type theorem on finitedomain" RIMS Kokyuroku.(to appear).
Osamu Hatori:“有限域上的 Shapiro-Shields 型定理”RIMS Kokyuroku。(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Sin-Ei-Takahasi: "Some convexity constants related to Hlawka inequalities in Banach spaces" RIMS Kokyuroku. (近刊).
Sin-Ei-Takahasi:“与 Banach 空间中的 Hlawka 不等式相关的一些凸性常数”RIMS Kokyuroku(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAHASI Sin-Ei其他文献
TAKAHASI Sin-Ei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAHASI Sin-Ei', 18)}}的其他基金
Classifications of commutative Banach algebras and Banach modules and its applications
交换Banach代数和Banach模的分类及其应用
- 批准号:
19540159 - 财政年份:2007
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classifications of commutative Banach algebras and Banach modules and its applications
交换Banach代数和Banach模的分类及其应用
- 批准号:
16540135 - 财政年份:2004
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




