Study on the nonlinear phenomena with moving boundaries
移动边界非线性现象的研究
基本信息
- 批准号:16540184
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is mainly concerned with the next two subjects, among the popular research topics of nonlinear phenomena involving the moving boundaries. 1 : Study on the phase separation. 2 : Study on the exercise boundary in mathematical finances.1.The author has been tackling the analysis of a model equation proposed by Professor T.Eguchi, which describes the phase separation in terms of two unknown variables. One is the local concentration and the other is the local degree of order. The model consists of coupled two evolution equations ; one is 4^<th> order and hence the analysis is tough. We concentrate on the one-dimensional case and we obtain fairy a lot of results. The first one is one the existence of solutions and the structure of steady state solutions. Analysis of a singular perturbation problem and a bifurcation problem then follows. We publish these papers in various journal, which are rather well estimated by anonymous referees.2.The author gives a set of exact solutions for the model equation proposed by K.Takaoka, which extends the famous Black-Scholes analysis. Then the author tries to solve the partial differential equations with the effect of transaction costs. The paper is submitted now.The research of the phase separation still continues. The direction with respect to the dynamical system seems promising and the work is now in progress.
本研究项目主要关注以下两个课题,这两个课题是涉及移动边界的非线性现象的热门研究课题。1:相分离的研究。2 .数学金融学中练习边界的研究。作者一直在分析T.Eguchi教授提出的模型方程,该模型方程用两个未知变量来描述相分离。一个是局部浓度,另一个是局部有序度。该模型由两个耦合的演化方程组成;一个是4^< >阶,因此分析比较困难。我们主要研究一维情况,得到了很多结果。第一个是解的存在性和稳态解的结构。接着分析奇异摄动问题和分岔问题。我们把这些论文发表在各种杂志上,这些杂志被匿名审稿人估计得相当准确。本文给出了takaoka提出的模型方程的一组精确解,扩展了著名的Black-Scholes分析。在此基础上,对考虑交易费用影响的偏微分方程进行了求解。论文已经提交了。相分离的研究仍在继续。关于动力系统的方向似乎很有希望,目前工作正在进行中。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-similar solutions for the kinematic model equation of spiral waves
螺旋波运动学模型方程的自相似解
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:N.Ishimura;T.Hanada;M.Nakamura;H.Morimoto;N.Ishimura;H.Morimoto;N.Ishimura
- 通讯作者:N.Ishimura
Primary 大学ノート 微分積分
小学微积分笔记
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Naoyuki ISHIMURA;Jong-Shenq GUO;Chin-Chin WU;藤田岳彦 他
- 通讯作者:藤田岳彦 他
Exact Solutions of a Model for Asset Prices by K. Takaoka
- DOI:10.1007/s10690-006-9022-9
- 发表时间:2004-12
- 期刊:
- 影响因子:1.7
- 作者:N. Ishimura;Toshio Sakaguchi
- 通讯作者:N. Ishimura;Toshio Sakaguchi
Bifurcation of steady states for the Eguchi-Oki-Matsumura model of phase separation
Eguchi-Oki-Matsumura 相分离模型的稳态分岔
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Naoyuki ISHIMURA;Ken-Ichi NAKAMURA;MasaAki NAKAMURA
- 通讯作者:MasaAki NAKAMURA
Bifurcations of steady state for the Eguchi-Oki-Matsumura model of phase separation
相分离 Eguchi-Oki-Matsumura 模型的稳态分岔
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:T.Fujita;N.Ishimura;A.Fujioka;Naoyuki ISHIMURA et al.
- 通讯作者:Naoyuki ISHIMURA et al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIMURA Naoyuki其他文献
ISHIMURA Naoyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIMURA Naoyuki', 18)}}的其他基金
Study on the nonlinear partial differential equations arising in applied field
应用领域中产生的非线性偏微分方程的研究
- 批准号:
21540117 - 财政年份:2009
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the global behavior of solutions for the fluid equation
流体方程解的全局行为研究
- 批准号:
13640206 - 财政年份:2001
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
- 批准号:
RGPIN-2018-05691 - 财政年份:2022
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2022
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
- 批准号:
RGPIN-2018-05691 - 财政年份:2021
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2021
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
- 批准号:
RGPIN-2018-05691 - 财政年份:2020
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2020
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2019
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
- 批准号:
RGPIN-2018-05691 - 财政年份:2019
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2018
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
- 批准号:
RGPIN-2018-05691 - 财政年份:2018
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Grants Program - Individual