Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
基本信息
- 批准号:RGPIN-2018-05691
- 负责人:
- 金额:$ 4.08万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal aims to study structures known as topological defects, found in a range of physical phenomena on both very small scales (superconductors, superfluids, micromagnetic materials) and very large scales (models for hypothetical objects known as cosmic strings which, if they exist, may span galaxies). These topological defects share some properties with vortex filaments in ordinary fluids that one encounters in everyday existence, notably water and air. Examples of such vortex filaments include smoke rings, tornados, trailing vortices from airplane wings, and the vortices shed by a canoe paddle. The analogies between these classical vortex filaments and topological defects are strongest for the particular defects (known as quantized vortex filaments) found in quantum mechanical fluids.The proposal addresses three classes of problems:1. the derivation of effective laws that govern the behaviour of topological defects. Like a vortex filament in a fluid, a topological defect is nothing more than a particular type of localized disturbance that propagates within a dynamic medium. To capture its behaviour, one starts from equations that describe the evolution of the ambient medium, and the challenge is to give a rigorous mathematical description of the motion of this particular type of disturbance within the medium.For example, an equation called the binormal curvature flow (BCF) is widely believed to govern quantized vortex filaments in ideal superfluids. Providing a rigorous proof of this belief is a long-standing open problem that drives much of our research in this area. 2. the extension of ideas developed in the study of topological defects to distinct but related problems. The most important and promising such problems involve vortex filaments in classical fluids such as (idealized) air or water. For example, a phenomenon known as vortex leapfrogging has been predicted in classical fluids since foundational work of Helmholtz in the 1850s. This has been studied in great detail by physicists and applied mathematicians, and it can even be seen in videos on youtube. But a mathematical understanding has been elusive. Leapfrogging was first proved to occur only in recent work of myself and my collaborator D Smets, and only for quantized vortices in superfluids. The proposed research will investigate whether techniques that we developed can be applied to study leapfrogging in ideal classical fluids.3. the study of effective laws that govern the behaviour of topological defects. For example, the above-mentioned BCF has remarkable but poorly-understood propertes that we will investigate.In addressing these problems, we will develop new mathematical techniques to provide a bridge between certain analytic and geometric questions.
该提案旨在研究称为拓扑缺陷的结构,这些结构存在于非常小尺度(超导体、超流体、微磁材料)和非常大尺度(称为宇宙弦的假设物体的模型,如果它们存在,可能会跨越星系)的一系列物理现象中。这些拓扑缺陷与人们在日常生活中遇到的普通流体(特别是水和空气)中的涡丝具有某些特性。这种涡丝的例子包括烟圈、龙卷风、飞机机翼的尾涡和独木舟桨产生的涡。这些经典涡丝和拓扑缺陷之间的类比对于量子力学流体中发现的特定缺陷(称为量子化涡丝)是最强的。该提案解决了三类问题:1.导出支配拓扑缺陷行为的有效定律。就像流体中的涡丝一样,拓扑缺陷只不过是在动态介质中传播的特定类型的局部扰动。为了捕捉它的行为,人们从描述周围介质演化的方程开始,挑战在于对这种特殊类型的扰动在介质中的运动给出严格的数学描述。例如,一个被称为副法线曲率流(BCF)的方程被广泛认为是理想超流体中量子化涡丝的控制方程。为这一信念提供严格的证据是一个长期存在的开放问题,它推动了我们在该领域的大部分研究。2.在拓扑缺陷的研究中发展出来的思想的延伸,使其延伸到不同但相关的问题。最重要和最有前途的问题涉及涡丝在经典流体,如(理想化)空气或水。例如,自19世纪50年代亥姆霍兹的基础工作以来,在经典流体中已经预测了一种称为涡蛙跳的现象。物理学家和应用数学家对此进行了详细的研究,甚至可以在youtube上的视频中看到。但数学上的理解一直是难以捉摸的。蛙跳现象首次被证明是在我和我的合作者D Smets最近的工作中发生的,而且只适用于超流体中的量子化涡旋。本研究将探讨我们所开发的技术是否可以应用于研究理想经典流体中的蛙跳现象。对控制拓扑缺陷行为的有效定律的研究。例如,上面提到的BCF具有我们将要研究的显著但不太理解的性质。在解决这些问题时,我们将开发新的数学技术,以在某些分析和几何问题之间提供桥梁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerrard, Robert其他文献
Jerrard, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerrard, Robert', 18)}}的其他基金
Science Literacy
科学素养
- 批准号:
566492-2021 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
PromoScience Supplement for Science Literacy Week
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
- 批准号:
RGPIN-2018-05691 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Science Odyssey
科学奥德赛
- 批准号:
561246-2021 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
PromoScience Supplement for Science Odyssey
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
- 批准号:
RGPIN-2018-05691 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
- 批准号:
RGPIN-2018-05691 - 财政年份:2019
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
- 批准号:
RGPIN-2018-05691 - 财政年份:2018
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Defect dynamics in nonlinear Hamiltonian partial differential equations
非线性哈密顿偏微分方程中的缺陷动力学
- 批准号:
261955-2013 - 财政年份:2017
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Defect dynamics in nonlinear Hamiltonian partial differential equations
非线性哈密顿偏微分方程中的缺陷动力学
- 批准号:
261955-2013 - 财政年份:2016
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Defect dynamics in nonlinear Hamiltonian partial differential equations
非线性哈密顿偏微分方程中的缺陷动力学
- 批准号:
261955-2013 - 财政年份:2015
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Defect dynamics in nonlinear Hamiltonian partial differential equations
非线性哈密顿偏微分方程中的缺陷动力学
- 批准号:
261955-2013 - 财政年份:2014
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
腊状芽胞杆菌ATCC 14579中赖氨酰tRNA合成酶I(LysRS1)和tRNA-Other的生理功能研究
- 批准号:30770034
- 批准年份:2007
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Design and synthesis of a next generation glycobiology toolbox for cell surface labeling
用于细胞表面标记的下一代糖生物学工具箱的设计和合成
- 批准号:
10699270 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Assessing Native Hawaiian and Pacific Islander Maternal Outcomes and Health Care Experiences
评估夏威夷原住民和太平洋岛民的产妇结局和医疗保健体验
- 批准号:
10644888 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Genome Editing Therapy for Usher Syndrome Type 3
针对 3 型亚瑟综合症的基因组编辑疗法
- 批准号:
10759804 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Fostering Community Connections Through Native Hawaiian Cultural Values to Strengthen Youth Resilience, Health, and Well-Being
通过夏威夷原住民文化价值观促进社区联系,增强青少年的适应能力、健康和福祉
- 批准号:
10781716 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
In vivo precision genome editing to correct genetic disease
体内精准基因组编辑以纠正遗传疾病
- 批准号:
10771419 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Leveraging CRISPR RNA-guided DNA Transposases for Gene Insertion at the CFTR Locus
利用 CRISPR RNA 引导的 DNA 转座酶在 CFTR 基因座插入基因
- 批准号:
10606698 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Dual-Language Communication and Social-Cognitive Skills in Bilingual Children with ASD
双语自闭症儿童的双语沟通和社交认知技能
- 批准号:
10591041 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Resource Center for Alzheimer's and Dementia Research in Asian and Pacific Americans
亚太裔美国人阿尔茨海默病和痴呆症研究资源中心
- 批准号:
10730059 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别: