Dynamics of Vortices in Bose-Einstein Condensates with Internal Degrees of Freedom

具有内部自由度的玻色-爱因斯坦凝聚体中的涡动力学

基本信息

  • 批准号:
    16540359
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

We have studied the dynamics of the multi-charged single quantum vortex in gaseous Bose-Einstein condensates. The vortices were created by topological way which was realized by controlling the atomic spin in the condensates confined in a magnetic trap. First, we created the condensates of atomic ^<87>Rb in the magnetic trap by well known evaporative cooling procedure. Second, we reversed the atomic spins in the condensate by changing the magnetic bias field from 0.5G to -0.5G. We searched the most efficient time for vortex generation by changing the field-reverse time from 1ms to 10ms. The vortices were created in 100-% efficiency when the reverse time was 5ms. Because of the atomic spin of two, the charge of vortices is four in our case.The vortices were disappeared for about 10ms, because the condensates were elongated due to a deformation of magnetic trap potential resulting in the field reversal. In order to avoid this, we tried to transfer the condensates with vortex in the optical trap. Since the potential shape does not change by the magnetic fields for this trap, condensates would be stably confined in the trap, and the lifetime of vortex would be expected to lengthen.We successfully transferred the condensates with vortex from the magnetic trap to optical trap. As a result, the enlargement of the condensates was suppressed, and the measured lifetime of vortices was about 20ms. We sometimes measured two vortices in a condensate at the trap time of about 20ms. We expect that these vortices are due to decay of a four-charge single vortex. As a future work, we would like to demonstrate this dynamics in detail.
研究了玻色-爱因斯坦凝聚体中多电荷单量子涡旋的动力学性质。通过控制磁阱中凝聚体中原子的自旋,以拓扑方式产生涡旋。首先,我们<87>利用蒸发冷却的方法在磁阱中产生了铷原子的凝聚态。第二,我们通过改变偏磁场从0.5G到-0.5G来反转凝聚体中的原子自旋。我们通过改变场反转时间从1 ms到10 ms来寻找产生涡旋的最有效时间。当反向时间为5 ms时,以100%的效率产生涡流。由于原子的自旋为2,在我们的例子中,涡旋的电荷为4,涡旋消失了大约10 ms,这是由于磁阱势的变形导致场反转而导致凝聚体被拉长。为了避免这种现象的发生,我们尝试在光阱中引入涡旋来转移凝聚态。由于势阱的形状不随磁场的变化而改变,因此,凝聚态将被稳定地限制在阱中,并且涡旋的寿命有望延长,我们成功地将带有涡旋的凝聚态从磁阱转移到光阱中。结果表明,凝结体的膨胀得到了抑制,测得的涡旋寿命约为20 ms。我们有时在一个凝聚体中测量到两个涡旋,捕获时间约为20 ms。我们预计,这些旋涡是由于一个四电荷单涡衰变。作为未来的工作,我们想详细展示这种动态。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic field dependence of the dynamics of ^<87>Rb spin-2 Bose-Einstein condensates
^<87>Rb spin-2 玻色-爱因斯坦凝聚态动力学的磁场依赖性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Fukuda;A.Toriyama;A.Izmailov;M.Tachikawa;桑本 剛
  • 通讯作者:
    桑本 剛
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUWAMOTO Takeshi其他文献

KUWAMOTO Takeshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUWAMOTO Takeshi', 18)}}的其他基金

Investigation of dynamics of multi-charged vortex in gaseous Bose-Einstein condensates
气态玻色-爱因斯坦凝聚中多电荷涡旋动力学的研究
  • 批准号:
    25400420
  • 财政年份:
    2013
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Using soft X-ray coherent diffraction imaging to study and tailor the formation of superfluid helium droplets and quantum vortices within them
使用软 X 射线相干衍射成像来研究和定制超流氦液滴及其内部量子涡旋的形成
  • 批准号:
    23K28359
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
  • 批准号:
    23K26488
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Visualising Superfluid Turbulence Using an Immiscible Second Component
使用不混溶的第二分量可视化超流体湍流
  • 批准号:
    EP/X028518/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Fellowship
RAISE: On D'Alembert's Paradox: Can airplanes fly in superfluid?
RAISE:关于达朗贝尔悖论:飞机能在超流体中飞行吗?
  • 批准号:
    2332556
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Continuing Grant
Using soft X-ray coherent diffraction imaging to study and tailor the formation of superfluid helium droplets and quantum vortices within them
使用软 X 射线相干衍射成像来研究和定制超流氦液滴及其内部量子涡旋的形成
  • 批准号:
    23H03670
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploring Properties of the Inner Crust of Neutron Stars Through Band Theory Calculations Based on Superfluid Density Functional Theory
基于超流体密度泛函理论的能带理论计算探索中子星内壳的性质
  • 批准号:
    23K03410
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dark Matter Searches using Quantum Enhanced Superfluid Technologies
使用量子增强超流体技术搜索暗物质
  • 批准号:
    EP/W028417/2
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Fellowship
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
  • 批准号:
    23H01795
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: CRYO: Sub-Kelvin Refrigerator using a Superfluid Helium Vortex Cooling Principle
EAGER:CRYO:使用超流氦涡流冷却原理的亚开尔文冰箱
  • 批准号:
    2232649
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Quantum Coherent Applications of Superfluid 3He
超流体 3He 的量子相干应用
  • 批准号:
    2210112
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了