On-line Nuclear Reactor Monitoring and Diagnosis in earliest stages using Neural Network
使用神经网络进行核反应堆在线监测和诊断
基本信息
- 批准号:16560735
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The object of this research is to develop the on-line nuclear reactor monitoring and diagnosis system using Neural Network theory. The nuclear reactor diagnostic system was developed and examined using reactor simulator and existing reactor data.In 2004 the diagnostic system applying auto-associative neural network theory was developed and examined about the ability of anomaly detection.In 2005 application of Kohonen network theory was investigated selectively. It was thought that in addition to anomaly detection, reactor diagnosis will be realized by using Kohonen network. The operational data of existing nuclear reactor which contain noise and power fluctuations was used for training the diagnosis system and the ability of diagnosis was tested.In 2006 the occurrence of error signal and anomaly diagnosis was examined using PWR simulator. The diagnosis of research reactor data(RSG-GAS, Indonetia) which contain noise was tested and succeeded. The detection of small helium leak which occur in HTTR ( High Temperature Gas Cooled Test Reactor, JAEA ) and power change caused by reactivity change was estimated correctly using this diagnosis system.These results were presented in some international proceedings and journals.
本研究的目的是利用神经网络理论开发核反应堆在线监测与诊断系统。利用反应堆模拟器和现有反应堆数据开发并检验了核反应堆诊断系统。2004年开发了应用自联想神经网络理论的诊断系统并检验了异常检测能力。2005年选择性地研究了Kohonen网络理论的应用。人们认为,除了异常检测之外,还可以利用 Kohonen 网络来实现反应堆诊断。利用现有核反应堆含有噪声和功率波动的运行数据对诊断系统进行训练,检验诊断能力。2006年利用压水堆模拟器对错误信号的发生情况和异常诊断情况进行了检查。对含有噪声的研究堆数据(RSG-GAS、Indonetia)的诊断进行了测试并取得成功。使用该诊断系统可以正确估计HTTR(高温气冷试验堆,JAEA)中发生的小氦泄漏和反应性变化引起的功率变化。这些结果在一些国际会议和期刊上发表。
项目成果
期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of Real-Time PWR Monitoring System using Neuro-Expert
使用 Neuro-Expert 开发实时压水堆监测系统
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:S.MUHAMMAD;T.OHNO;K.NABESHIMA;K.KUDO
- 通讯作者:K.KUDO
Development of On-Line Monitoring System for Nuclear Power Plant (NPP) Using Neuro-Expert, Noise Analysis, and Modified Neural Networks
使用神经专家、噪声分析和改进的神经网络开发核电厂 (NPP) 在线监测系统
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:S.MUHAMMAD;T.OHNO;K.TAKAMATSU;K.NABESHIMA;K.KUDO
- 通讯作者:K.KUDO
On-line Reactor Monitoring with Neural Network for RSG-GAS
RSG-GAS 神经网络反应器在线监测
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S.MUHAMMAD;T.OHNO;K.NABESHIMA;K.KUDO
- 通讯作者:K.KUDO
Full-Integrated System of Real-Time Monitoring Based on Distributed Architecture for High Temperature Engineering Test Reactor (HTTR)
基于分布式架构的高温工程试验堆(HTTR)实时监控全集成系统
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S.MUHAMMAD;T.OHNO;K.KUDO;K.TAKAMATSU;K.NABESHIMA
- 通讯作者:K.NABESHIMA
ニューラルネットワークを用いたHTTR制御棒引抜き試験の事前解析手法
HTTR控制棒拉拔试验神经网络初步分析方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Tomio OHNO;S.MUHAMMAD;K.KUDO;K.TAKAMATSU;S.Nakagawa;K.NABESHIMA;大野富生 他
- 通讯作者:大野富生 他
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUDO Kazuhiko其他文献
KUDO Kazuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUDO Kazuhiko', 18)}}的其他基金
Modeling of Flooding Mechanism in Gas Diffusion Layer of Fuel Cell
燃料电池气体扩散层溢流机理建模
- 批准号:
19360093 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optical Measurement of Solidification Ratio in Phase Change Slurry considering Refraction in Droplets
考虑液滴折射的相变浆料凝固率光学测量
- 批准号:
17360088 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Estimation of Radiative and Scattering Characteristics of Sodium Aerosols Using Inverse Analysis
利用反演分析估计钠气溶胶的辐射和散射特性
- 批准号:
13450079 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Fast Numerical Method to Solve Nongray Radiative Heat Transfer in Three-dimensional Arbitrary Shaped Systems by Pre-calculating Geometrical Characteristics
通过预先计算几何特性求解三维任意形状系统中非格雷辐射传热的快速数值方法的发展
- 批准号:
09555068 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SOLUTION METHOD OF INVERSE PROBLEM ON RADIATIVE・CONVECTIVE HEAT TRANSFER
辐射·对流传热反问题的求解方法
- 批准号:
07455090 - 财政年份:1995
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis on Radiative Energy Transmittance Through Packed Spheres by Monte Carlo Med
通过 Monte Carlo Med 分析填充球体的辐射能量透射率
- 批准号:
01550160 - 财政年份:1989
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Modeling of Coupled Radiative and Convective Heat Transfer through Three-Dimensional Packed Beds with Random Arrangement
通过随机排列的三维填充床耦合辐射和对流传热的建模
- 批准号:
62550140 - 财政年份:1987
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Establishment of an early-diagnosis and personalized medicine system in Autism spectrum disorder focusing on aberrant dynamical neural network
建立以异常动态神经网络为重点的自闭症谱系障碍早期诊断和个性化医疗体系
- 批准号:
20K07964 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Bayesian deep neural network for early diagnosis of oral cancers
用于口腔癌早期诊断的贝叶斯深度神经网络
- 批准号:
421110 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Operating Grants
Development of Deep Convolutional Neural Network for Computer-Aided Diagnosis of Ischemic Heart Disease
缺血性心脏病计算机辅助诊断深度卷积神经网络的发展
- 批准号:
20K20233 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automatic 2D Convolutional Neural Network Modelling for Obstructive Sleep Apnea Diagnosis
用于阻塞性睡眠呼吸暂停诊断的自动 2D 卷积神经网络建模
- 批准号:
541365-2019 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
University Undergraduate Student Research Awards
SHF: Small: Collaborative Research: Retraining-free Concurrent Test and Diagnosis in Emerging Neural Network Accelerators
SHF:小型:协作研究:新兴神经网络加速器中的免再训练并发测试和诊断
- 批准号:
2011236 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Retraining-free Concurrent Test and Diagnosis in Emerging Neural Network Accelerators
SHF:小型:协作研究:新兴神经网络加速器中的免再训练并发测试和诊断
- 批准号:
1909854 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Retraining-free Concurrent Test and Diagnosis in Emerging Neural Network Accelerators
SHF:小型:协作研究:新兴神经网络加速器中的免再训练并发测试和诊断
- 批准号:
1910022 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Developing Systems for Early Diagnosis of Dementia by using Neural Network Dynamics
利用神经网络动力学开发痴呆症早期诊断系统
- 批准号:
18K18124 - 财政年份:2018
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hetero-multi-modal stroke diagnosis and prognosis deep neural network model
异质多模态脑卒中诊断与预后深度神经网络模型
- 批准号:
2125383 - 财政年份:2018
- 资助金额:
$ 2.3万 - 项目类别:
Studentship
A multimodal convolutional neural network for prostate cancer diagnosis using volumetric multiparametric MRI and clinical features.
使用体积多参数 MRI 和临床特征进行前列腺癌诊断的多模态卷积神经网络。
- 批准号:
1921611 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Studentship