SOLUTION METHOD OF INVERSE PROBLEM ON RADIATIVE・CONVECTIVE HEAT TRANSFER
辐射·对流传热反问题的求解方法
基本信息
- 批准号:07455090
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. A solution method is developed by utilizing the singular value decomposition to solve the inverse radiative load problems on combined radiative-convective-heat transfer problems. To show the validity of the method, the profile of heat load of each heater which is required to give uniform heat flux on a solid material set in a two-dimensional furnace is obtained.2. A solution method is also developed to solve the inverse radiative property value problems, in which, temperature and heat flux profiles along the solid walls surrounding the system and the gas temperature distribution in the system are given and the distribution of gas absorption coefficient in the system is calculated. In the method, forward problem of radiative heat transfer is solved by the Monte Carlo method at first by giving initial values of gas absorption coefficients, and wall heat flux distribution corresponding to the gas absorption coefficients is obtained from the temperatur distributions of gas and wall elem … More ents. Then, the tentative values of the absorption coefficients are corrected so as that the difference between the obtained and initially given profiles of wall heat flux become zero. By repeating these procedure, the distribution of absorption coefficient which corresponds to the initial conditions. For the convergence of the values of the absorption coefficients, the energy equations are pseudo-linearized for the absorption coefficients. To shorten the computation time required for the iterational calculation, the radiative energy exchange factors between calculational elements, the READ values, are divided into two parts, the absorption-coefficient-dependent part and the independent part, and the independent part which requires long computation time for its use of the Monte Carlo method is pushed out of the iterational loop. By combining these technique, the solution method to solve the inverse radiative property value problem is developed. The method is applied to a two-dimensional system, and the validity is proved. Less
1.提出了一种利用奇异值分解求解辐射-对流-换热组合问题的辐射负荷反问题的方法。为了验证该方法的有效性,得到了二维炉内固体物料均匀热流所需的各加热器的热负荷分布.给出了系统内气体温度分布、气体吸收系数分布以及系统周围固体壁面沿着的温度分布和热流密度分布。该方法首先通过给定气体吸收系数的初值,用MonteCarlo方法求解辐射换热正问题,然后由气体和壁面温度分布求出与气体吸收系数相对应的壁面热流分布, ...更多信息 ents。然后,对吸收系数的暂定值进行修正,使得到的壁面热流分布与初始给定的壁面热流分布之差为零。通过重复这些过程,得到了与初始条件相对应的吸收系数分布.为了使吸收系数的值收敛,对能量方程进行了伪线性化。为了缩短迭代计算所需的计算时间,将计算元件之间的辐射能量交换因子(READ值)分为吸收系数相关部分和独立部分,并将由于使用Monte Carlo方法而需要长计算时间的独立部分推出迭代循环。将这些技术结合起来,发展了辐射特性值反问题的求解方法。将该方法应用于一个二维系统,证明了该方法的有效性。少
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kazuhiko Kudo: "Estimation of absorptioncoofficent dis Tribution in Two-dimensional gas volume by solving inversc radiative property value problem." Proc. 2nd Int. Symp. on Radiative Transfer. (to be pblished). (1997)
Kazuhiko Kudo:“通过解决逆辐射特性值问题来估计二维气体体积中的吸收系数分布。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
工藤一彦: "非灰色ガス噴流の放射・対流共存伝熱解析" 日本機械学会論文集 B編. 61. 2235-2240 (1995)
Kazuhiko Kudo:“非灰气体射流的辐射和对流传热分析”日本机械工程师学会汇刊,卷 B.61.2235-2240 (1995)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiko Kudo: "Anelysis on inverse radialive property in two-dimensional systems" Proc. 1977 National Hcat Transfon Cont. (to be published). (1997)
Kazuhiko Kudo:“二维系统中逆径向性质的分析”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUDO Kazuhiko其他文献
KUDO Kazuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUDO Kazuhiko', 18)}}的其他基金
Modeling of Flooding Mechanism in Gas Diffusion Layer of Fuel Cell
燃料电池气体扩散层溢流机理建模
- 批准号:
19360093 - 财政年份:2007
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optical Measurement of Solidification Ratio in Phase Change Slurry considering Refraction in Droplets
考虑液滴折射的相变浆料凝固率光学测量
- 批准号:
17360088 - 财政年份:2005
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On-line Nuclear Reactor Monitoring and Diagnosis in earliest stages using Neural Network
使用神经网络进行核反应堆在线监测和诊断
- 批准号:
16560735 - 财政年份:2004
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimation of Radiative and Scattering Characteristics of Sodium Aerosols Using Inverse Analysis
利用反演分析估计钠气溶胶的辐射和散射特性
- 批准号:
13450079 - 财政年份:2001
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Fast Numerical Method to Solve Nongray Radiative Heat Transfer in Three-dimensional Arbitrary Shaped Systems by Pre-calculating Geometrical Characteristics
通过预先计算几何特性求解三维任意形状系统中非格雷辐射传热的快速数值方法的发展
- 批准号:
09555068 - 财政年份:1997
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis on Radiative Energy Transmittance Through Packed Spheres by Monte Carlo Med
通过 Monte Carlo Med 分析填充球体的辐射能量透射率
- 批准号:
01550160 - 财政年份:1989
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Modeling of Coupled Radiative and Convective Heat Transfer through Three-Dimensional Packed Beds with Random Arrangement
通过随机排列的三维填充床耦合辐射和对流传热的建模
- 批准号:
62550140 - 财政年份:1987
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
- 批准号:
23K17336 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
- 批准号:
23KK0049 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Research on inverse problem analysis of viscoelastic equations
粘弹性方程反问题分析研究
- 批准号:
22K03366 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
3D tracking system for micro magnetization vector realized by inverse problem algorithm
反问题算法实现的微磁化矢量3D跟踪系统
- 批准号:
22K04246 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
- 批准号:
2111039 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Development of typhoon ensemble forecasting system based on the source inverse problem of potential vorticity
基于位涡源反问题的台风集合预报系统研制
- 批准号:
21H01431 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
- 批准号:
2110833 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
- 批准号:
20H02484 - 财政年份:2020
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Simultaneous characterization of near-field nanoplasmonic structure and function using super-resolved far-field optics: Solving the Inverse Problem
使用超分辨远场光学同时表征近场纳米等离子体结构和功能:解决反演问题
- 批准号:
1808766 - 财政年份:2018
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Development of high-efficiency calculation method for solving inverse problem and singular value decomposition for each local area in image restoration processing
图像恢复处理中求解逆问题和各局部区域奇异值分解的高效计算方法的开发
- 批准号:
18K11351 - 财政年份:2018
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)