Upgrading image display of 3-D shapes with high density and high accuracy
升级高密度、高精度的 3D 形状图像显示
基本信息
- 批准号:17500112
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. High-density high-accuracy display of 3-D scenes3-D polyhedral shapes reconstructed from images may be different from their true shapes. We established a new technique for detecting the discrepancy by analyzing the input images, by which more realistic display is made possible.Displaying multiple images of the scene around the viewer may cause inconsistencies when the viewing direction is moved by 360° or more. We devised a technique for optimally pasting images subject to the condition that no inconsistency occurs, by which the scene is continuously displayed for arbitrary changes of the viewing direction.2. Theory for high accuracy geometric fitting and its applicationsWe gave a theoretical foundation to the "renormalization" method, which this investigator proposed before with a worldwide impact, in relation to the theoretical accuracy bound. We also analyzed its accuracy, which was known only to a first approximation, up to second order terms strictly. This lead to a discovery o … More f a "hyperaccurate" method that outperforms all existing methods. We confirmed this by experiments.3. Efficient and high-accuracy computation of the fundamental matrix from two imagesWe devised a new technique for computing the fundamental matrix from noisy point correspondence data, which is the first step of 3-D reconstruction from images. This method is more accurate and efficient than all existing methods.4. High-accuracy and efficient technique for 3-D reconstruction from video streamsWe extended the "factorization" method, which efficiently reconstructs the 3-D shape of the scene from feature point tracking over a video stream using affine camera modeling, to a general form which includes all existing models. We confirmed using simulated and real video images that an appropriate camera model is automatically selected by this method.We also devised a high-accuracy "self-calibration" technique, to which we incorporated schemes for avoiding redundancies and predicting the values to be computed. We confirmed that the computation speed is increased by several thousand times. Less
1.高密度、高精度的三维场景显示从图像重建的三维多面体形状可能与其真实形状不同。我们建立了一种通过分析输入图像来检测差异的新技术,通过该技术可以实现更真实的显示。当观看者周围的场景的多个图像移动360°或更大时,可能会导致不一致。我们设计了一种技术,用于最佳粘贴图像的条件下,不发生不一致,通过该场景是连续显示的任意变化的观察方向.高精度几何拟合理论及其应用本文从理论精度界的角度,对作者提出的具有世界影响的“重正化”方法给出了理论基础。我们还分析了它的准确性,这是已知的只有一个近似值,直到二阶项严格。这导致了一个发现, ...更多信息 f一个“超精确”的方法,优于所有现有的方法。我们通过实验证实了这一点。从两幅图像中高效、高精度地计算基本矩阵我们设计了一种从噪声点对应数据中计算基本矩阵的新技术,这是从图像进行三维重建的第一步。该方法比现有的所有方法更准确、更高效.一种高精度、高效率的视频流三维重建技术我们将“因式分解”方法推广到一种包括所有现有模型的一般形式,该方法利用仿射摄像机建模从视频流上的特征点跟踪有效地重建场景的三维形状。我们确认使用模拟和真实的视频图像,一个合适的摄像机模型是自动选择通过这种方法。我们还设计了一个高精度的“自校准”技术,其中,我们纳入计划,以避免冗余和预测的值计算。我们证实,计算速度提高了几千倍。少
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ellipse Fitting with Hyperaccuracy
- DOI:10.1093/ietisy/e89-d.10.2653
- 发表时间:2006-05
- 期刊:
- 影响因子:0
- 作者:K. Kanatani
- 通讯作者:K. Kanatani
Experimental evaluation of geometric fitting algorithms
几何拟合算法的实验评估
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Sumi K.;Liu C.;Matsuyama T.;K.Kanatani
- 通讯作者:K.Kanatani
Optimizing a triangular mesh adapted for shape reconstruction from images.
优化适合从图像重建形状的三角形网格。
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Sumi K.;Liu C.;Matsuyama T.;K.Kanatani;K.Kanatani;K.Kanatani;K.Kanatani et al.;K.Kanatani;K.Kanatani et al.;Y.Sugaya;K.Kanatani;K.Kanatani;K.Kanatani;K.Kanatani;Y.Sugaya et al.;K.Kanatani et al.;K.Kanatani;K.Kanatani et al.;K.Kanatani;R.Klette et al.;K.Kanatani;K.Kanatani;A.Nakatsuji;K.Kanatani et al.;A.Nakatsuji et al.
- 通讯作者:A.Nakatsuji et al.
Handbook of Computational Geometry : Applications in Pattern Recognition, Computer Vision, Neurocomputing, and Robotics.
计算几何手册:在模式识别、计算机视觉、神经计算和机器人技术中的应用。
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Sumi K.;Liu C.;Matsuyama T.;K.Kanatani;K.Kanatani;K.Kanatani;K.Kanatani et al.;K.Kanatani;K.Kanatani et al.;Y.Sugaya;K.Kanatani;K.Kanatani;K.Kanatani;K.Kanatani;Y.Sugaya et al.;K.Kanatani et al.;K.Kanatani;K.Kanatani et al.;K.Kanatani;R.Klette et al.;K.Kanatani;K.Kanatani;A.Nakatsuji;K.Kanatani et al.;A.Nakatsuji et al.;E.Bayro Corrochano et al.
- 通讯作者:E.Bayro Corrochano et al.
Stabilizing the focal length computation for 3-D reconstruction from two uncalibrated views
稳定两个未校准视图的 3D 重建的焦距计算
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Sumi K.;Liu C.;Matsuyama T.;K.Kanatani;K.Kanatani;K.Kanatani;K.Kanatani et al.;K.Kanatani;K.Kanatani et al.;Y.Sugaya;K.Kanatani;K.Kanatani;K.Kanatani
- 通讯作者:K.Kanatani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANATANI Kenichi其他文献
KANATANI Kenichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANATANI Kenichi', 18)}}的其他基金
Establishing Hyper-Renormalization for Geometric Estimation from Images
建立图像几何估计的超重整化
- 批准号:
24650086 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Optimal 3-D Reconstruction from Multiple Images by Means of Orthogonal Projection in High-dimensional Spaces
通过高维空间中的正交投影从多个图像中进行最优 3D 重建
- 批准号:
21500172 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Detecting Correspondences between Video Image Frames and Upgrading Scene Analysis Using Them
检测视频图像帧之间的对应关系并使用它们升级场景分析
- 批准号:
15500113 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Development of Statistical Optimization and Model Selection for Motion Image Analysis
运动图像分析统计优化和模型选择的新进展
- 批准号:
13680432 - 财政年份:2001
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stable Realization of Virtual Reality by Model Selection
通过模型选择稳定实现虚拟现实
- 批准号:
11680377 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Image Recognition and Understanding based on the Geometric Information Criterion
基于几何信息准则的图像识别与理解
- 批准号:
09680352 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementation of Optical Flow Analysis System Equipped with Reliability Evaluation
具有可靠性评估功能的光流分析系统的实现
- 批准号:
07458067 - 财政年份:1995
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)