On solutions of polynomial Pell's equations and the continued fraction factorization algorithm
多项式佩尔方程的解及连分式分解算法
基本信息
- 批准号:17540052
- 负责人:
- 金额:$ 0.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Study on the polynomial Pell's equation was first done by Abel in the connection of finding an elliptic integral which can be expressed using an elementary function. This was done in the field of rational numbers.When we restrict solutions of the polynomial Pell's equation to be integer coefficient polynomial, the known result is only for a monic quartic polynomial. We have shown in 2003, a necessary and sufficient condition for the polynomial Pell's equation has a nontrivial integer coefficient polynomial solution for D = A^2+2C and A/C∈Q[x].In this research, collaborating with Prof.Webb, we have studied the polynomial Pell's equation using the period of continued fraction expansions of √<D> in the connection with rational points on the elliptic curve arising from the partial quotients. We also have studied the polynomial Pell's equation by looking at the small periods.For D a monic quartic polynomial, we are able to show that there is no period 3 continued fraction expansion.For D a monic polynomial, we are able to show that the values of period of continued fraction expansions are even if and only if the polynomial Pell's equation X^2-DY^2 = 1 has a nontrivial solution.For D a monic quartic polynomial, we are able to show that the polynomial Pell's equation X^2-DY^2 = 1 has a nontrivial solution in Q[x] if and only if the values of the period of continued fraction expansions are 2,4,6,8,10,14,18,22.
研究多项式佩尔方程首先做了阿贝尔在连接找到一个椭圆积分,可以表示使用一个初等函数。这是在有理数领域中进行的,当我们把多项式Pell方程的解限制为整系数多项式时,已知的结果只适用于一元四次多项式。我们在2003年证明了多项式Pell方程对D = A^2+2C且A/C∈Q[x]有非平凡整系数多项式解的一个充分必要条件<D>。我们还从小周期的角度研究了多项式Pell方程,对于一元四次多项式D,我们能够证明不存在周期为3的连分式展开式,对于一元多项式D,我们能够证明连分式展开式的周期值是偶数当且仅当多项式Pell方程X^2-DY^2 =对于一元四次多项式D,我们证明了Pell方程X^2-DY^2 = 1在Q[x]中有非平凡解的充要条件是连分式展开式的周期为2,4,6,8,10,14,18,22.
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polynomial Pell's equation and periods of quadratic irrationals
多项式佩尔方程和二次无理数周期
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Masahiko;Ito;H.Yokota;H.Yokota
- 通讯作者:H.Yokota
Polynomial Pell' s equation and periods of quadratic irrationals
多项式佩尔方程和二次无理数周期
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Masahiko;Ito;H.Yokota
- 通讯作者:H.Yokota
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOKOTA Hisashi其他文献
YOKOTA Hisashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOKOTA Hisashi', 18)}}的其他基金
On Establishment of Adaptive Tutoring System using Multiline Handwriting Mathematical Inputs
多行手写数学输入自适应辅导系统的建立
- 批准号:
20500843 - 财政年份:2008
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2022
- 资助金额:
$ 0.83万 - 项目类别:
Postgraduate Scholarships - Doctoral
Elliptic curve analogues of arithmetic sequences
算术序列的椭圆曲线类似物
- 批准号:
573026-2022 - 财政年份:2022
- 资助金额:
$ 0.83万 - 项目类别:
University Undergraduate Student Research Awards
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2021
- 资助金额:
$ 0.83万 - 项目类别:
Postgraduate Scholarships - Doctoral
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2020
- 资助金额:
$ 0.83万 - 项目类别:
Postgraduate Scholarships - Doctoral
Algorithms for determining supersingular elliptic curve endomorphism rings
确定超奇异椭圆曲线自同态环的算法
- 批准号:
544841-2019 - 财政年份:2019
- 资助金额:
$ 0.83万 - 项目类别:
University Undergraduate Student Research Awards
Study and development of advanced elliptic curve cryptosystem
先进椭圆曲线密码体制的研究与开发
- 批准号:
19K11966 - 财政年份:2019
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2019
- 资助金额:
$ 0.83万 - 项目类别:
Postgraduate Scholarships - Doctoral
Elliptic Curve Computations
椭圆曲线计算
- 批准号:
527578-2018 - 财政年份:2018
- 资助金额:
$ 0.83万 - 项目类别:
University Undergraduate Student Research Awards
Active Attacks on FourQ-Based Hardware Implementations of Elliptic Curve Cryptosystems
对基于 FourQ 的椭圆曲线密码系统硬件实现的主动攻击
- 批准号:
529069-2018 - 财政年份:2018
- 资助金额:
$ 0.83万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Elliptic Curve Computations
椭圆曲线计算
- 批准号:
527579-2018 - 财政年份:2018
- 资助金额:
$ 0.83万 - 项目类别:
University Undergraduate Student Research Awards