A study on new developments of Hopf-Galois correspondence
霍普夫-伽罗瓦对应的新进展研究
基本信息
- 批准号:17540055
- 负责人:
- 金额:$ 0.51万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let K be a field and A a X-K Hopf algebra. Assume that A is finite-dimensional as a left K-space and pointed as a K-coalgebra. Then the dimension of A as a right K-space coincides with the dimension as a left K-space.Let R be a prime algebra having K as the center of the symmetric quotient algebra Q. Suppose that A acts on Q with continuous and outer action. If A has a nonzero left integral, then a rationally complete subalgebra of R containing the subalgebra of H-invariants of R corresponds to a right coideal subalgebra of A by a certain correspondence map. If R is stable under the action of any grouplike element of A, this correspondence map is injective.Let A^* be the set of all right K-maps from A to K and B a right coideal subalgebra of A. If B has a nonzero left integral t and t generates B as a left A*-module, then the above correspondence map is surjective.Next let R be a prime algebra over a field k and H a finite-dimensional pointed Hopf algebra acting on R with an outer action. The following two problems, which extend the results when H is a group algebra, were examined in the case of a certain example and positive answers were obtained.1. Let U be a subalgebra of R containing the subalgebra of H-invariants RH. Does an automorphism of U which fixes RH extend to an automorphism of R?2. Assume that the center of the symmetric quotient algebra of R coincides with k. Let I be a normal right coideal subalgebra of H and H' the quotient Hopf algebra of H by I. Then is the action of H' on the subalgebra of I-invariants of R outer?
设K是域,A是X-K Hopf代数。设A是有限维的左K-空间,指向的是K-余代数。设R是对称商代数Q的中心为K的素代数,则A作用于Q上的作用是连续的且外作用的.如果A有一个非零左积分,则R的一个含有R的H-不变子代数的有理完备子代数通过一定的对应映射对应于A的一个右上理想子代数。若R在A的任一群元作用下稳定,则该对应映射是内射的.设A^*是A到K的所有右K-映射的集合,B是A的右余理想子代数.如果B有一个非零的左积分t且t生成B为左A*-模,则上述对应映射是满射的.其次设R是域k上的素代数,H是作用于R上的有外作用的有限维点Hopf代数.在H是群代数的情况下,研究了下列两个问题,并给出了肯定的回答。设U是R的一个包含H-不变子代数RH的子代数。2.设R的对称商代数的中心与k重合,设I是H的正规右余理想子代数,H‘是H的商Hopf代数,则H’在R的I不变子代数上的作用是外的吗?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YANAI Tadashi其他文献
YANAI Tadashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YANAI Tadashi', 18)}}的其他基金
A study on duality of Hopf modules
Hopf模对偶性的研究
- 批准号:
15540054 - 财政年份:2003
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on Galois Theory for the Actions of Hopf Algebras
霍普夫代数作用的伽罗瓦理论研究
- 批准号:
10640052 - 财政年份:1998
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
- 批准号:
RGPIN-2020-04230 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
- 批准号:
RGPIN-2018-05821 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
- 批准号:
RGPIN-2017-06543 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Faithful flatness of Hopf algebras over their Hopf subalgebras
Hopf 代数在其 Hopf 子代数上的忠实平坦性
- 批准号:
2876141 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Studentship
Algebras with action and coaction of Hopf algebras
具有 Hopf 代数作用和相互作用的代数
- 批准号:
RGPIN-2018-04883 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
- 批准号:
RGPIN-2018-05821 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
- 批准号:
RGPIN-2017-06543 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual