Hopf algebras, combinatorics, and operator theory

Hopf 代数、组合数学和算子理论

基本信息

  • 批准号:
    RGPIN-2019-05075
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

I am most interested in problems involving interplay between several branches of mathematics. I plan to work on problems involving Hopf algebras, linear algebra, operator theory, and algebraic combinatorics. (1) I plan to continue working on open questions about collections of operators acting on a Banach space (of either finite or infinite dimension). I will focus on questions where not only analytic, but also algebraic, geometric, and combinatorial techniques can be applied. Many of such problems involve the study of simultaneous reducibility, triangularizability, and transitivity -type properties of collections of matrices. Collections in questions often posses an algebraic structure such as, for example, the structure of a semigroup, group, or an algebra. Sufficient conditions that guarantee triangularizability of semigroups can often be phrased in terms of the eigenvalues of matrices involved. (2) Hopf algebras are algebraic structures arising in numerous parts of mathematics, as well as in physics. Examples of Hopf algebras include group algebras, universal envelopes of Lie algebras, algebras of representative functions on Lie groups, coordinate algebras of algebraic groups, algebras of symmetric and quasi--symmetric functions, and quantum groups. I plan to study the algebraic structure of Hopf algebras in order to classify them, construct new interesting examples, and apply them to problems in algebra, analysis, and combinatorics. (3) One of the areas where my interests in algebra, analysis, and combinatorics are combined is free probability. Free probability is a mathematical theory that studies non-commuting random variables. The free independence is an analogue of the classical notion of independence, and is connected with free products of algebras. It has many applications in the theory of operator algebras as well as in the theory of random matrices (which have become very important because of, among other things, their applications in physics and engineering). A typical type of question one asks in the random matrix theory is as follows: "What can we say about the eigenvalues of a matrix that resulted from some known random process?" If matrices are sufficiently large and can be decomposed as sums or products of well understood matrices, then free probability techniques can help answer such questions. In joint work with A. Nica we have constructed a combinatorial Hopf algebra which can be used to study joint distributions of k--tuples in a noncommutative probability space. This approach exposed numerous connections with other branches of mathematics (diagonal harmonics, representation theory of symmetric groups, classical probability, to name a few) and opened numerous new avenues of possible research which we hope to pursue.
我对涉及数学几个分支之间相互影响的问题最感兴趣。我计划研究涉及Hopf代数、线性代数、算子论和代数组合学的问题。(1)我计划继续研究关于作用在Banach空间(有限维或无限维)上的算子集合的公开问题。我将把重点放在不仅可以应用分析技术,而且可以应用代数、几何和组合技术的问题上。许多这样的问题涉及矩阵集合的同时可约性、三角化和传递型性质的研究。问题中的集合通常具有代数结构,例如,半群、群或代数的结构。保证半群可三角化的充分条件通常可以用所涉及的矩阵的特征值来表示。(2)Hopf代数是出现在数学和物理中的许多部分的代数结构。Hopf代数的例子包括群代数、李代数的泛包络、李群上的代表函数的代数、代数群的坐标代数、对称和准对称函数的代数以及量子群。我计划研究Hopf代数的代数结构,以便对它们进行分类,构造新的有趣的例子,并将它们应用于代数、分析和组合学中的问题。(3)我对代数、分析和组合学的兴趣结合在一起的一个领域是自由概率。自由概率是一种研究非通勤随机变量的数学理论。自由独立性是经典的独立性概念的类比,它与代数的自由积有关。它在算子代数理论和随机矩阵理论中有许多应用(这些理论变得非常重要,因为它们在物理和工程中的应用)。在随机矩阵理论中,一个典型的问题是:“关于某个已知随机过程产生的矩阵的特征值,我们能说些什么呢?”如果矩阵足够大,并且可以分解为众所周知的矩阵的和或乘积,那么自由概率技术可以帮助回答这些问题。在与A.Nica的共同工作中,我们构造了一个组合Hopf代数,它可用于研究非对易概率空间中k-字节组的联合分布。这种方法暴露了与其他数学分支(对角调和、对称群表示理论、经典概率论等)的许多联系,并开辟了许多我们希望追求的可能研究的新途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mastnak, Mitja其他文献

Mastnak, Mitja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mastnak, Mitja', 18)}}的其他基金

Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2015
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operators and combinatorics
Hopf 代数、运算符和组合数学
  • 批准号:
    371994-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operators and combinatorics
Hopf 代数、运算符和组合数学
  • 批准号:
    371994-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
  • 批准号:
    RGPIN-2019-05075
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2015
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operators and combinatorics
Hopf 代数、运算符和组合数学
  • 批准号:
    371994-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebras, operators and combinatorics
Hopf 代数、运算符和组合数学
  • 批准号:
    371994-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了