Research of real algebraic geometry by model theory

模型论研究实代数几何

基本信息

  • 批准号:
    17540071
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

Functions with D-minimal structure and, especially, algebraic properties of analytic function ring were researched, and the following results were obtained, 1. By having invited Acquistapace and Broglia of Pisa University I investigated the family of global semianalytic sets. We tried to prove that the family is closed under the operations of taking finite union, finite intersection complement and cometed component. Then we solved the problem for dimension up to 4, and will publish in an article. 2. I visited University of Reines and worked jointly with caste on the problem of compactification of definable metric. In B-minimal structure there seems to be no differences between compactness and noncompactness. The problem concretizes this idea. We solved it and writed an article, which will be published. 3. J.Bolte of University of Paris 7 was invited, with who Lojasiewicz inequality was studied. The inequality was originally proved by Lojasiewicz in the local case. After then many mathematicians tried to generalized it. But any result was essentially local. We proved it globally and in any D-minimal structure. The work will appear in some journal. 4. Tu Le Loi of University of Dalat and I made joint researches on the ring of definable analytic functions. We concluded that there were no methods in research for general O-minimal structure, and adopted the hypothesis that the complexification of definable analytic function is definable. Then many important algebraic properties of the ring were shown, for example, noetherianness of the ring, Hilbert 17th problem and real Nallstellen Satz. We will write them in a paper or a book.
研究了具有D-极小结构的函数,特别是解析函数环的代数性质,得到了如下结果:1。通过邀请Acquistapace和Broglia的比萨大学我调查了家庭的全球半解析集。我们试图证明这个族在取有限并、有限交补和余分支的运算下是封闭的。然后,我们解决了维度高达4的问题,并将发表在一篇文章中。2.我访问了大学的雷恩和共同工作与种姓的问题紧的可定义度量。在B-极小结构中,紧性和非紧性似乎没有区别。这个问题使这个想法具体化。我们解决了这个问题,并写了一篇文章,将发表。3.邀请了巴黎第七大学的J.Bolte,与他一起研究了Lojasiewicz不等式。这个不等式最初是由Lojasiewicz在局部情况下证明的。此后,许多数学家试图将其推广,但任何结果本质上都是局部的。我们证明了它在全球范围内,并在任何D-最小结构。这项工作将出现在某个期刊上。4.大叻大学的Tu Le Loi和我共同研究了可定义解析函数的环。我们认为目前还没有研究一般O-极小结构的方法,并采用了可定义解析函数的复化是可定义的假设。然后给出了环的许多重要的代数性质,如Noether性,Hilbert第17问题和真实的Nallstelen Satz等.我们会把它们写在纸上或书上。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clarke critical values of subanalytic Lipschitz continuous functions
亚解析 Lipschitz 连续函数的 Clarke 临界值
Isolated roardings and flattennings of submanifolds in euclidean space
欧氏空间中子流形的孤立路径和展平
The finteness property and lojasiewiczineguality for global semiconslyticsets
全局半约束集的有限性和lojasiewiczinequality
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F.Acguistapace;F.Broglia;M.Shiota
  • 通讯作者:
    M.Shiota
Whitney triaingulations of semialgebraic sets
半代数集的惠特尼三角剖分
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F.Acguistapace;F.Broglia;M.Shiota;M.Shiota
  • 通讯作者:
    M.Shiota
Whitney triangulations of semialgebraic sets
半代数集的惠特尼三角剖分
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIOTA Masahiro其他文献

SHIOTA Masahiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIOTA Masahiro', 18)}}的其他基金

Geometry on real closed fields and sevaral complex variable functions
实闭域几何和几个复变函数
  • 批准号:
    22540076
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Conference: Travel Awards to Attend the Twentieth Latin American Symposium on Mathematical Logic
会议:参加第二十届拉丁美洲数理逻辑研讨会的旅行奖
  • 批准号:
    2414907
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Construction of Mathematical Logic System to Verify Quantum Communication Networks and Its Quantum Computational Implications
验证量子通信网络的数学逻辑系统的构建及其量子计算意义
  • 批准号:
    22KJ1483
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Nineteenth Latin American Symposium on Mathematical Logic
第十九届拉丁美洲数理逻辑研讨会
  • 批准号:
    2212620
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Fostering Virtual Learning of Data Science Foundations with Mathematical Logic for Rural High School Students
协作研究:促进农村高中生数据科学基础与数学逻辑的虚拟学习
  • 批准号:
    2201394
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Reconsideration of the applications of the mathematical logic in "French Thought".
数理逻辑在《法国思想》中应用的再思考
  • 批准号:
    22K00103
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Fostering Virtual Learning of Data Science Foundations with Mathematical Logic for Rural High School Students
协作研究:促进农村高中生数据科学基础与数学逻辑的虚拟学习
  • 批准号:
    2201393
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
  • 批准号:
    RGPIN-2016-06154
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
  • 批准号:
    RGPIN-2016-06154
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
The Eighteenth Latin American Symposium on Mathematical Logic
第十八届拉丁美洲数理逻辑研讨会
  • 批准号:
    1947015
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
  • 批准号:
    RGPIN-2016-06154
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了