Motion of nonlinear Schroedinger solitons under external potentials

外部电势下非线性薛定谔孤子的运动

基本信息

  • 批准号:
    17540358
  • 负责人:
  • 金额:
    $ 1.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

Since Bose-Einstein condensates were found in alkali metal gases in 1995, material properties of BECs and atomic laser have been intensively studied. Nonlinear dynamics in BECs is also intensively studied. Quantum vortices and vortex lattices were found in rotating BECs. Solitons and dark solitons were found in BECs confined in one dimensional space by external magnetic field. These nonlinear excitation is well described by the Gross-Pitaevskii equation or the nonlinear Schroedinger equation.We have numerically studied the nonlinear Schroedinger equation under external potential and the spatially modulated nonlinear Schroedingher equation, and found some new results concerning the solitons and the vortices. We have published the results in Physical Review and so on. By the interference of several laser lights, we can introduce spatially periodic potentials, which are called optical lattices. In various optical lattices, solitons and vortices exhibit various motion. Some results are pointed out in the followings.1. We have studied the stability of soliton lattices and vortex lattices in a square optical lattice.2. We have shown that gap solitons exist stably in a quasiperiodic optical lattice.3. We have studied the stability of solitons in a rotating optical lattice.4. We have studied soliton motions in the one-dimensional nonlinear Schroedinger equation with spatially modulated nonlinearity.5. We have found a stable two-dimensional soliton in the nonlinear Schroedinger equation with spatially moduated nonlinearity.6. We have found some processes in which two-dimensional dark solitons are naturally created.7. We have found moving solitons and vortices with arbitrary velocities in the complex Ginzburg-Landau equation without viscosity, and studied the mutual collision.
自1995年在碱金属气体中发现玻色-爱因斯坦凝聚态以来,BEC和原子激光的材料特性得到了深入研究。 BEC 中的非线性动力学也得到了深入研究。在旋转的 BEC 中发现了量子涡旋和涡旋晶格。在被外部磁场限制在一维空间的 BEC 中发现了孤子和暗孤子。这些非线性激励可以用Gross-Pitaevskii方程或非线性薛定谔方程很好地描述。我们对外势下的非线性薛定谔方程和空间调制非线性薛定谔方程进行了数值研究,发现了一些关于孤子和涡旋的新结果。我们的研究成果发表在Physical Review等杂志上。通过多束激光的干涉,我们可以引入空间周期性势,称为光学晶格。在各种光学晶格中,孤子和涡旋表现出各种运动。部分研究结果如下: 1.研究了方形光学晶格中孤子晶格和涡旋晶格的稳定性。 2.我们证明了带隙孤子在准周期光学晶格中稳定存在。 3.研究了旋转光学晶格中孤子的稳定性。 4.研究了具有空间调制非线性的一维非线性薛定谔方程中的孤子运动。 5.我们在具有空间调制非线性的非线性薛定谔方程中发现了稳定的二维孤子。6.我们发现了一些自然产生二维暗孤子的过程。7.我们在无粘性的复Ginzburg-Landau方程中发现了任意速度的运动孤子和涡旋,并研究了它们之间的碰撞。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two-dimensional solitons in the Gross-Pitaevskii equation with spatially modulated nonlinearity.
Motion of pulses and vortices in the cubic-quintic complex Ginzburg-Landau equation without viscosity
  • DOI:
    10.1016/j.physd.2005.07.011
  • 发表时间:
    2005-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Sakaguchi
  • 通讯作者:
    H. Sakaguchi
Gap solitons in quasiperiodic optical lattices.
Two-dimensional solitons in two-dimensional Gross-Pitaevskii equation with spatially modulated nonliniality
具有空间调制非线性的二维 Gross-Pitaevskii 方程中的二维孤子
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Sakaguchi;B.A.Malomed
  • 通讯作者:
    B.A.Malomed
Gap solitons in quasiperiodic optical solitons
准周期光学孤子中的带隙孤子
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Sakaguchi;B.A.Malomed
  • 通讯作者:
    B.A.Malomed
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAKAGUCHI Hidetsugu其他文献

SAKAGUCHI Hidetsugu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAKAGUCHI Hidetsugu', 18)}}的其他基金

Formation and dynamics of branching and hierarchical structures
分支和层次结构的形成和动态
  • 批准号:
    22540393
  • 财政年份:
    2010
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pattern formations and control in reaction-diffusion systems
反应扩散系统中的图案形成和控制
  • 批准号:
    19540407
  • 财政年份:
    2007
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modeling for Spatio-Temporal Chaos
时空混沌建模
  • 批准号:
    11837014
  • 财政年份:
    1999
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

磁性薄膜和磁性纳米结构中的自旋动力学研究
  • 批准号:
    11174131
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
台风眼及其周围螺旋雨带的动力学研究
  • 批准号:
    40375017
  • 批准年份:
    2003
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
  • 批准号:
    EP/X034542/2
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Research Grant
CAREER: Acoustic Vortex Robots for Contactless 6-Degrees-of-Freedom Object Manipulation
职业:用于非接触式 6 自由度物体操纵的声学涡旋机器人
  • 批准号:
    2340016
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
Innovative Method for Estimating Flood Flows and Riverbed Topography from Water Surface Video Images Using the Vortex and Wave Principle
利用涡波原理从水面视频图像估算洪水流量和河床地形的创新方法
  • 批准号:
    23K17776
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Postdoctoral Fellowship: MPS-Ascend: Vortex-beam Spectroscopy of Type-II Superconductors in the THz Regime
博士后奖学金:MPS-Ascend:太赫兹体系中 II 型超导体的涡旋光束光谱
  • 批准号:
    2316535
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Fellowship Award
The influence of magnetic fields and electrical conductivity variations on vortex formation
磁场和电导率变化对涡流形成的影响
  • 批准号:
    2881746
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Studentship
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
  • 批准号:
    EP/X034542/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Research Grant
Research on topological constraints that characterize the vortex structure of plasmas
表征等离子体涡旋结构的拓扑约束研究
  • 批准号:
    23KJ0435
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards understanding transition mechanism and application to heat transfer enhancement of elasto-inertia turbulence at low Reynolds number based on vortex modulation
基于涡旋调制的低雷诺数弹惯性湍流传热强化的理解和应用
  • 批准号:
    23K19093
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Did the 2022 strong polar vortex make serial extratropical cyclone clustering more likely? (StratClust)
2022年的强极地涡旋是否使系列温带气旋聚集的可能性更大?
  • 批准号:
    NE/X011933/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Research Grant
Ultrafast beam pattern modulation with spiral symmetry by spatiotemporal coupling of ultrafast optical vortex pulses and its application
超快光学涡旋脉冲时空耦合螺旋对称超快光束方向图调制及其应用
  • 批准号:
    23H01873
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了