Development of automotive body which can detected structural damage and it's structural health monitoring

结构损伤检测及结构健康监测的汽车车身开发

基本信息

  • 批准号:
    17560234
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

In recent years, development of the wireless communication technology is able to provide useful information and active safety for the drivers. Though many researchers try to monitor a traffic congestion, weather condition, road surface condition and car maintenance by the on-board TV camera or the probe car system, sensor signals of these have non-stationary and transitory characteristics while the vehicle is in motion. Structural health monitoring is used for this purpose. In structural health monitoring, the response signals from sensors built into a structure are used to monitor the condition of the structure. When strain, vibration, sound and infrared sensors are used for monitoring real structures, they are generally affected by environmental and load changes often resulting in a nonlinear relationship between phenomena and the response signals. Since the response signals from a vehicle-like structure that continually experiences vibration contain information about the vehicle's o … More perating conditions and environment, a highly accurate technique for monitoring and analyzing the vehicle's structure is required to interpret changes in the response signal accurately.In order to predict the occurrence of phenomena we need to create a model that relates the response signals to the phenomena. Strong generalization capabilities are required for highly accurate predictions. General learning tools can be used for modeling. The learning processes employed by these techniques enable the creation of a complicated nonlinear model, but they require defining the various learning parameters appropriately. Even a model capable of classifying learning data correctly may yield only a local solution. In order to obtain a model that has great generalizability, the learning parameters must be determined by trial and error.In this study, therefore, the Support Vector Machines method that uses a statistical technique for learning and estimating is applied to structural health diagnosis. Since the method for creating a model of great generalizability based on a theory of statistical learning is clearly an optimization problem, SVM is expected to give highly accurate prediction of phenomena. We investigate and evaluate SVM by applying it to the vibration response, which is dependent on various factors, and using it to diagnose the structural health of a vehicle. Less
近年来,无线通信技术的发展能够为驾驶员提供有用的信息和主动安全。虽然许多研究人员试图通过车载电视摄像机或探测车系统来监测交通拥堵、天气状况、路面状况和汽车维护,但这些传感器信号在车辆运行时具有非平稳和瞬时特征。结构健康监测用于此目的。在结构健康监测中,内置在结构中的传感器的响应信号用于监测结构的状况。当使用应变、振动、声音和红外传感器对真实结构进行监测时,它们通常会受到环境和载荷变化的影响,导致现象与响应信号之间存在非线性关系。由于来自持续经历振动的类似车辆的结构的响应信号包含关于车辆的o…的信息更多的运行条件和环境,需要一种高精度的监测和分析车辆结构的技术,以准确地解释响应信号的变化。为了预测现象的发生,我们需要建立一个将响应信号与现象联系起来的模型。对于高度准确的预测,需要强大的泛化能力。一般的学习工具可以用于建模。这些技术采用的学习过程能够创建复杂的非线性模型,但它们需要适当地定义各种学习参数。即使是能够正确地对学习数据进行分类的模型也可能只产生局部解。为了得到具有很强泛化能力的模型,学习参数必须通过反复试算来确定,因此,本研究将统计学习和估计技术的支持向量机方法应用于结构健康诊断。由于基于统计学习理论建立具有很强泛化能力的模型的方法显然是一个优化问题,因此预计支持向量机将给出对现象的高精度预测。通过将支持向量机应用于依赖于各种因素的振动响应,并将其用于车辆结构健康诊断,对支持向量机进行了研究和评价。较少

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Health monitoring of vehicle structure by using feature extraction based on wavelet transform
基于小波变换的特征提取车辆结构健康监测
Development and processing technique of automotive body materials and reliability assessment
汽车车身材料开发、加工技术及可靠性评估
サポートベクターマシンを用いたボルト結合構造の健全性診断
基于支持向量机的螺栓连接结构健康诊断
Travel Time Measurement by Vehicle Sequence Matching Method - Evaluation Method of Vehicle Sequence using Levenshtein Distance -
车辆序列匹配法的行程时间测量 - 使用编辑距离的车辆序列评估方法 -
構造健全性診断へのサポートベクターマシンの応用
支持向量机在结构健康诊断中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AOKI Yoshio其他文献

AOKI Yoshio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AOKI Yoshio', 18)}}的其他基金

Development of automobile shock absorbing member by made of high strength glass fiber and in-situ polymerizable thermoplastic resin
高强度玻璃纤维与原位聚合热塑性树脂汽车减震件的研制
  • 批准号:
    18K04637
  • 财政年份:
    2018
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the structural health monitoring system for prevention of the accident of an elevator and the amusement machine
预防电梯、游乐机事故的结构健康监测系统的研制
  • 批准号:
    23310114
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of the structural health monitoring system for initial damage identification of an elevator and the amusement machine
电梯、游艺机初始损伤识别结构健康监测系统的开发
  • 批准号:
    20310099
  • 财政年份:
    2008
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of remote type healthcare navigation system for accident reduction of the electric wheelchair
开发减少电动轮椅事故的远程型保健导航系统
  • 批准号:
    15560224
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
  • 批准号:
    2401655
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了