Supplement to Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for EnhancedBioremediation of PFASs Using Supercritical Fluid Chromatography/Mass Spectrometry
使用超临界流体色谱/质谱法增强 PFAS 生物修复功能化混合纳米材料的模型辅助设计和集成的补充
基本信息
- 批准号:10601888
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-04 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAftercareAmino AcidsAnaerobic BacteriaBindingBiodegradationBiologicalBioremediationsBloodCarbonChemicalsCommunitiesDegradation PathwayDevelopmentDockingEnvironmentEnvironmental PollutionEnzymesEvolutionExcisionExposure toFluorineGenesGenetic TranscriptionGoalsHazardous ChemicalsHealthHumanHybridsHydrogen PeroxideIndustrializationIronKidneyKineticsKnowledgeLinkMalignant NeoplasmsMalignant neoplasm of liverMass Spectrum AnalysisMeasurableMeasuresMetagenomicsMetalsMicrobiologyMineralsModelingMolecularNMR SpectroscopyNanotechnologyNon-Insulin-Dependent Diabetes MellitusOutcomeOxidation-ReductionOxidesPathway interactionsPersonsPoisonPoly-fluoroalkyl substancesProductionPropertyPublic HealthResearchResolutionRiskSiteSourceStructureSupercritical Fluid ChromatographySystemTechniquesTechnologyTestingToxic effectToxicokineticsTrainingWorkcatalystconsumer productdehalogenationdesigndrinking waterefficacy testingexposed human populationgrapheneground waterimprovedin silicoinnovationliver injurymicrobialmicrobial communitymicrobial genomemineralizationmolecular dynamicsmolecular modelingnanonanomaterialsnovelpreventrRNA Genesremediationsubstance usetitanium dioxidetooltranscriptomicsultraviolet irradiation
项目摘要
ABSTRACT
Global public health concern is growing over per- and polyfluoroalkyl substances (PFASs) toxicity,
environmental persistence, and potential to bioaccumulate in humans and wildlife. Nearly every person who has
been tested for PFASs shows measurable levels in their blood resulting from contamination of the environment
and continued use in consumer products and industrial applications. In particular, drinking water appears to be
the major source of PFAS exposure for people living near contaminated sites. Importantly, some PFASs have been
linked to liver damage, developmental impacts, and several cancers (e.g., kidney, testicular). Environmental
remediation is urgently needed, but efforts are hampered by the extreme persistence of the carbon-fluorine bond.
Biodegradation typically involves only the non-fluorinated components of polyfluorinated PFASs, resulting in the
creation of shorter-chain perfluorinated acids that are more persistent and mobile. Complete mineralization has
not been demonstrated. Abiotic treatment technologies can be more effective but require extremely high energy
inputs, and the degradation mechanisms are poorly understood. There is a critical need for a treatment
technology with lower energy requirements, and for enhanced degradation pathways that efficiently mineralize
PFASs without formation of perfluorinated acids that persist after treatment.
The overarching goal of this proposal is to develop an innovative nanomaterial-biological strategy to tackle
the challenge of PFAS biodegradation. Our central hypothesis is that pretreatment by tailored nanomaterials can
facilitate transformation of structurally diverse PFASs to achieve more efficient and complete biodegradation.
Our previous work has shown that functionalized nanohybrid catalysts incorporating reduced graphene oxide
(rGO) and nano zerovalent iron (nZVI) can successfully initiate degradation of long-chain PFASs. Here, we will
employ this abiotic transformation as an innovative pretreatment to unlock the biodegradation of PFASs.
Leveraging our expertise in molecular modeling and ‘omics’ techniques, we will test and tailor the ability of
microbial communities to more efficiently degrade pretreated PFASs and their initial degradation products. All
degradation products will be characterized by high-resolution mass spectrometry and 19F-nuclear magnetic
resonance spectroscopy to reveal the mechanisms that enable this nano-bioremediation strategy. This research
will tackle a pressing environmental contamination problem with three complementary specific aims:
Aim 1: Synthesize multifunctional redox-active nanohybrid materials and evaluate their catalytic
properties for PFAS degradation (dehalogenation, degradation of long-chains to short-chains). We will
synthesize and characterize two multifunctional and hierarchical carbon-metal nanohybrids: (i) redox-active
reduced graphene oxide nano zerovalent iron (rGO–nZVI) and (ii) photocatalytic rGO-nZVI- titanium dioxide
(TiO2) or rGO-nZVI-TiO2, and test the efficacy and extent to which they can transform and/or degrade PFASs
under UV irradiation and/or H2O2 exposure. We will identify the PFAS degradation products and elucidate the
associated chemical degradation pathways, kinetics, and mechanisms.
Aim 2: Assess the efficacy of biodegradation and complete mineralization of PFASs and degradation
products by enriched microbial cultures. Mixed anaerobic microbial communities that include known
dehalogenators will be cultured with a range of short- and long-chain untreated and nanomaterial-treated PFASs
to measure the removal efficacy and mineralization of PFASs. Microbial community structure and activity will be
measured by 16s rRNA gene abundance and transcription levels of known reductive dehalogenases genes.
Metagenomics and transcriptomics will be applied to elucidate microbial genomes and reductive defluorination
pathways that are involved in PFASs biodegradation.
Aim 3: Perform molecular modeling to discover, detect, and refine enzymatic biodegradation for
structurally diverse PFASs. In silico tools, including molecular docking and molecular dynamics, have shown
powerful potential for identifying PFAS-biomolecule interactions that can inform our understanding of PFAS
toxicokinetics and toxicodynamics. Here, molecular modeling approaches will be used to identify strong
interactions between structurally diverse PFASs and enzymes that have shown potential for degradation of
persistent halogenated substances. The specific interactions between PFASs and amino acid residues in these
enzymes will be identified; strategies, including community composition and directed enzyme evolution, will be
investigated to allow tuning of molecular interactions to improve degradability of PFASs.
Expected Outcomes: Our integrative approach has significant potential to advance our understanding of PFAS
redox transformation mechanisms and biodegradation pathways. By combining our expertise in nanomaterial
design, microbiology, chemical characterization, and molecular modeling, we will enable the design of a
synergistic system to completely degrade, defluorinate, and mineralize diverse PFASs. This novel nano-
bioremediation approach has the potential for inclusion and application within the treatment train for both PFASs-
contaminated groundwater and drinking water sources. Knowledge on the PFASs degradation mechanisms at
the molecular level will substantially advance the environmental remediation of this ubiquitous class of
contaminants, and prevent further human exposure to these bioaccumulative and hazardous chemicals.
摘要
全球公众对全氟和多氟烷基物质(PFASs)毒性的担忧与日俱增,
环境持久性,以及在人类和野生动物体内生物积累的潜力。几乎每一个有过
进行了全氟辛烷磺酸的检测表明,由于环境污染,他们的血液中含有可测量的水平
并在消费品和工业应用中继续使用。特别是,饮用水似乎是
对居住在受污染地点附近的人来说,接触全氟辛烷磺酸的主要来源。重要的是,一些全氟辛烷磺酸已经
与肝脏损伤、发育影响和几种癌症(如肾脏、睾丸)有关。环境
迫切需要补救措施,但碳-氟键的极端持久性阻碍了这一努力。
生物降解通常只涉及多氟全氟ASs的非氟化成分,导致
产生更持久和流动性更强的短链全氟化酸。完全的矿化有
没有被演示过。非生物处理技术可以更有效,但需要极高的能量
投入不多,降解机制知之甚少。急需一种治疗方法
能源需求更低的技术,以及高效矿化的强化降解途径
没有形成全氟化酸的全氟化酸,在治疗后仍然存在。
这项提案的首要目标是开发一种创新的纳米材料-生物战略,以应对
全氟辛烷磺酸生物降解的挑战。我们的中心假设是,用量身定制的纳米材料进行预处理可以
促进结构多样化的全氟辛烷磺酸的转化,以实现更有效和完全的生物降解。
我们以前的工作表明,含有还原石墨烯氧化物的功能化纳米杂化催化剂
RGO(RGO)和纳米零价铁(NZVI)可以成功引发长链PFASs的降解。在这里,我们将
利用这种非生物转化作为一种创新的预处理来解锁全氟辛烷磺酸的生物降解。
利用我们在分子建模和组学技术方面的专业知识,我们将测试和定制
微生物群落更有效地降解经处理的全氟辛烷磺酸及其初始降解产物。全
降解产物将用高分辨率质谱仪和19F-核磁进行表征
共振光谱,以揭示使这种纳米生物修复策略成为可能的机制。这项研究
将以三个相辅相成的具体目标解决紧迫的环境污染问题:
目的1:合成多功能氧化还原活性纳米杂化材料并评价其催化性能
全氟辛烷磺酸降解的性质(脱卤化、长链到短链的降解)。我们会
两种多功能多层碳-金属纳米杂化材料的合成与表征:(I)氧化还原活性
还原氧化石墨烯纳米零价铁(rGO-nZVI)和(II)光催化rGO-nZVI-二氧化钛
(二氧化钛)或rGO-nZVI-二氧化钛,并测试它们转化和/或降解PFASs的效果和程度
在紫外线照射和/或过氧化氢暴露下。我们将鉴定全氟辛烷磺酸的降解产物,并澄清
相关的化学降解途径、动力学和机制。
目的2:评估全氟辛烷磺酸的生物降解和完全矿化以及降解的效果
产品由丰富的微生物培养物生产。混合厌氧微生物群落,包括已知的
脱卤剂将与一系列短链和长链未经处理和纳米材料处理的PFASs一起培养
测定PFASs的去除效果和矿化度。微生物群落结构和活性将
通过16S rRNA基因丰度和已知还原脱卤酶基因的转录水平来衡量。
元基因组学和转录组学将应用于阐明微生物基因组和还原脱氟
参与全氟辛烷磺酸生物降解的途径。
目标3:执行分子建模以发现、检测和优化酶生物降解
结构多样化的全氟辛烷磺酸。在电子计算机中,包括分子对接和分子动力学在内的工具已经表明
识别PFAS-生物分子相互作用的强大潜力可以帮助我们理解PFAS
毒物动力学和毒物动力学。在这里,分子建模方法将被用来识别强
结构多样的PFASs与显示出潜在降解潜力的酶之间的相互作用
持久性卤化物质。PFASs与这些氨基酸残基之间的特异性相互作用
将确定酶;包括群落组成和定向酶进化在内的策略将被
研究允许调节分子相互作用以改善全氟辛烷磺酸的降解性。
预期结果:我们的综合方法有很大潜力促进我们对PFAS的理解
氧化还原转化机制和生物降解途径。通过结合我们在纳米材料方面的专业知识
设计、微生物学、化学特性和分子建模,我们将使
协同系统,可完全降解、脱氟和矿化各种全氟辛烷磺酸。这种新颖的纳米材料
生物修复方法有可能被纳入和应用于两种全氟辛烷磺酸的处理序列中-
受污染的地下水和饮用水水源。关于全氟辛烷磺酸降解机理的知识,请访问
分子水平将大大推进这一无处不在的类别的环境修复
并防止人类进一步接触这些生物累积的危险化学品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diana S Aga其他文献
Diana S Aga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diana S Aga', 18)}}的其他基金
Resolving Relationships: Determining the Impacts of Environmental Matrices on the Ionization Efficiencies of Per and Polyfluoroalkyl Substances (PFAS) for the Development of a Semi-Quantitation Model
解决关系:确定环境基质对全氟烷基物质和多氟烷基物质 (PFAS) 电离效率的影响,以开发半定量模型
- 批准号:
10580971 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10319174 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10728494 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10515650 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10156782 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Bioactivation of PBDEs by Human Cytochrome P-450
人细胞色素 P-450 对 PBDE 的生物活化
- 批准号:
8447016 - 财政年份:2012
- 资助金额:
$ 2.75万 - 项目类别:
Bioactivation of PBDEs by Human Cytochrome P-450
人细胞色素 P-450 对 PBDE 的生物活化
- 批准号:
8285111 - 财政年份:2012
- 资助金额:
$ 2.75万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 2.75万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 2.75万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 2.75万 - 项目类别:














{{item.name}}会员




