Smoothed finite element methods in modelling and simulation of cardiac electromechanics

心脏机电建模与仿真中的平滑有限元方法

基本信息

项目摘要

In modelling of cardiac electromechanics, so far the finite element method (FEM) is the commonly utilised technique. However, its performance crucially depends on the mesh quality. Due to the complex personalised cardiac geometries, in most cases only tetrahedral meshes can be generated automatically. Nevertheless, the cost efficient linear tetrahedral elements in combination with a nearly incompressible material and large deformations suffer from volumetric locking. As alternatives, hexahedral meshes, high order elements or meshless methods can be used. However, the first ones mostly require manual adjustments, whereas the second and third ones are computationally expensive. On the other hand, smoothed finite element methods (S-FEM) are known to be volumetric locking free, less sensitive to mesh distortion and so far, have been successfully used e.g. in simulation of passive cardiac mechanics. To overcome the mentioned difficulties, S-FEMs are proposed to be further developed for the application to active cardiac mechanics, electrophysiology and their coupling.The overall objective of this work is to provide computationally cost efficient but also accurate cardiac simulation models within the framework of S-FEMs which work well on automatically generated tetrahedral meshes.The proposed work is grouped into five thematical work packages. Firstly, node-based S-FEM (NS-FEM) for 3D is implemented. Then, NS-FEM is combined with face-based S-FEM (FS-FEM) in order to obtain the selective NS/FS-FEM. The S-FEM approach is then extended to active cardiac mechanics, electrophysiology and fully coupled electromechanics. After that, further important ingredients for cardiac electromechanics are included into the S-FEM model. Finally the simulation results are compared to clinical data and our previous results using FEM.
在心脏电力学建模中,目前常用的方法是有限元方法。然而,它的性能关键取决于网格质量。由于心脏复杂的个性化几何形状,在大多数情况下,只能自动生成四面体网格。然而,具有成本效益的线性四面体单元与几乎不可压缩的材料和大变形相结合,受到体积锁定的影响。作为替代,可以使用六面体网格、高阶单元或无网格法。然而,第一种方法大多需要手动调整,而第二种方法和第三种方法计算成本较高。另一方面,光滑有限元方法(S有限元)具有体积无锁定、对网格变形不敏感等优点,目前已成功地应用于被动心脏力学的模拟。为了克服上述困难,建议进一步开发S-FEMS,以应用于主动心脏力学、电生理学及其相互耦合。这项工作的总体目标是在S-FEMS的框架内提供计算成本高且准确的心脏仿真模型,该模型可以很好地用于自动生成四面体网格。该工作被分成五个数学工作包。首先,实现了基于节点的三维S有限元方法。然后,将NS-有限元与基于面的S有限元相结合,得到选择性的NS/FS-有限元。然后将S-有限元方法扩展到主动心脏力学、电生理学和完全耦合的电机学。在此基础上,进一步将心脏电机学的重要成分纳入S-有限元模型。最后,将模拟结果与临床数据和我们以前的有限元结果进行了比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr.-Ing. Sigrid Leyendecker其他文献

Professorin Dr.-Ing. Sigrid Leyendecker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr.-Ing. Sigrid Leyendecker', 18)}}的其他基金

Electromechanically coupled beam models for stacked dielectric elastomer actuators
堆叠介电弹性体致动器的机电耦合梁模型
  • 批准号:
    426808054
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A mechano-geometric framework to characterize macromolecular ensembles
表征大分子整体的力学几何框架
  • 批准号:
    401512690
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Simulation und optimale Steuerung der Dynamik von Mehrkörpersystemen in der Biomechanik und Robotik
生物力学和机器人领域多体系统动力学的仿真和优化控制
  • 批准号:
    83985804
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
CISM-Kurs "Nonlinear dynamics and chaos for high volume and ultra precision metal cutting"
CISM 课程“大批量和超精密金属切削的非线性动力学和混沌”
  • 批准号:
    5444309
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamic analysis of prosthetic structures with polymorphic uncertainty
具有多态不确定性的假体结构的动态分析
  • 批准号:
    312916115
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Symplectic discretizations for optimal control problems in mechanics
力学中最优控制问题的辛离散化
  • 批准号:
    516305324
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Whitham调制理论在色散方程间断初值问题中的应用
  • 批准号:
    12001556
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
  • 批准号:
    EP/Y004671/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
  • 批准号:
    EP/X042650/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
  • 批准号:
    2338843
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Using paired CT/MRI images to create finite element model of metaphyseal fracture in young children
使用配对 CT/MRI 图像创建幼儿干骺端骨折有限元模型
  • 批准号:
    2883532
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
  • 批准号:
    10759862
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
  • 批准号:
    2309425
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Quantifying the relationship between intracortical remodeling, microdamage, and bone quality in a novel in vivo loading model
在新型体内负荷模型中量化皮质内重塑、微损伤和骨质量之间的关系
  • 批准号:
    478357
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome
左心发育不全综合征三尖瓣修复的患者特异性计算模型
  • 批准号:
    10643122
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了