Symplectic discretizations for optimal control problems in mechanics
力学中最优控制问题的辛离散化
基本信息
- 批准号:516305324
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The optimal control of mechanical problems is omnipresent in our technically affected daily living as well as in many scientific questions. As analytical solutions of optimal control problems are in general not available, applications rely on numerical simulations that are robust and accurate, and directly utilizable by engineers. For general discretization methods, the resulting approximation to the state and adjoint equations are different. Results to date suggest that certain symplectic methods can produce the same approximation for both equations and lead to commutation between the discretization and the optimization step, e.g.~yielding a link between direct and indirect methods. One objective of this project to generalize these results to the complete class of symplectic integrators applied to optimal control problems for mechanical systems. The results of this project will lead to a deeper understanding of the role of symplecticity in optimal control problems for mechanical systems. Furthermore, this new approach will provide a convenient framework to derive symplectic discretizations for optimal control problems, similar to the use of variational integrators for forward dynamics problems in mechanics. This makes accurate schemes to approximate state and control -- which are usually obtained via indirect methods but require sophisticated skills in the derivation -- accessible also via direct methods and thus more easily available for engineering applications.
机械问题的最优控制在我们受技术影响的日常生活中以及在许多科学问题中无处不在。由于最优控制问题的解析解通常不可用,应用程序依赖于稳健和准确的数值模拟,并且工程师可以直接使用。对于一般的离散化方法,得到的状态方程和伴随方程的近似是不同的。到目前为止的结果表明,某些辛方法可以对这两个方程产生相同的近似,并导致离散化和优化步骤之间的转换,例如,在直接方法和间接方法之间产生了联系。这个项目的一个目标是将这些结果推广到应用于机械系统最优控制问题的完整类辛积分器。这个项目的结果将使我们更深入地理解辛性在机械系统最优控制问题中的作用。此外,这种新的方法将提供一个方便的框架来推导最优控制问题的辛离散化,类似于力学中正动力学问题的变分积分器的使用。这使得精确的近似状态和控制方案--通常通过间接方法获得,但在推导过程中需要复杂的技巧--也可以通过直接方法获得,因此更容易用于工程应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr.-Ing. Sigrid Leyendecker其他文献
Professorin Dr.-Ing. Sigrid Leyendecker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr.-Ing. Sigrid Leyendecker', 18)}}的其他基金
Electromechanically coupled beam models for stacked dielectric elastomer actuators
堆叠介电弹性体致动器的机电耦合梁模型
- 批准号:
426808054 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
A mechano-geometric framework to characterize macromolecular ensembles
表征大分子整体的力学几何框架
- 批准号:
401512690 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Simulation und optimale Steuerung der Dynamik von Mehrkörpersystemen in der Biomechanik und Robotik
生物力学和机器人领域多体系统动力学的仿真和优化控制
- 批准号:
83985804 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
CISM-Kurs "Nonlinear dynamics and chaos for high volume and ultra precision metal cutting"
CISM 课程“大批量和超精密金属切削的非线性动力学和混沌”
- 批准号:
5444309 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Dynamic analysis of prosthetic structures with polymorphic uncertainty
具有多态不确定性的假体结构的动态分析
- 批准号:
312916115 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Smoothed finite element methods in modelling and simulation of cardiac electromechanics
心脏机电建模与仿真中的平滑有限元方法
- 批准号:
496647562 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
This PhD project is about the development of structure preserving (e.g. mass and total energy) finite element discretizations of flow models in Geophy
该博士项目是关于地球物理学中流动模型的结构保持(例如质量和总能量)有限元离散化的发展
- 批准号:
2753929 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2111387 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Tailored Entropy Stable Discretizations of Nonlinear Conservation Laws
职业:非线性守恒定律的定制熵稳定离散化
- 批准号:
1943186 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual