The Proof-Theoretic Structure of Counterfactual Inference
反事实推理的证明理论结构
基本信息
- 批准号:497275981
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Counterfactual conditionals (i.e., constructions of the form 'if A were the case, then B would be the case') are ubiquitous in ordinary and scientific reasoning, and they are of central importance to philosophy. Typically, their logic and semantics is studied in terms of model-theoretic methods by appeal to possible worlds models, where the counterfactual logics based on the model-theoretic analyses usually extend classical logic. The main objective of the project is to contribute to the development of a proof-theoretic semantics for counterfactuals which is acceptable from an intuitionistic (or constructive) point of view. The project, thus, enters an almost unexplored area of research. It will be couched in a proof-theoretic perspective on counterfactuals which starts out from a methodological primacy of inference and proof. Roughly, on this perspective, the meaning of counterfactuals is explained in terms of the proof-theoretic structure of constructive counterfactual inferences which guide us, in a suitable structural proof system, from the antecedent of the counterfactual A to its consequent B. The project will be pursued building on the framework of subatomic natural deduction developed by the applicant in previous work. A main desideratum is the suitability of the intended proof-theoretic semantics for the analysis of counterfactuals in natural language.
反事实条件句(即‘如果A是这样,那么B就是这样’形式的结构在普通的和科学的推理中是普遍存在的,它们对哲学具有核心的重要性。通常,它们的逻辑和语义是用模型论的方法来研究的,求助于可能世界模型,其中基于模型论分析的反事实逻辑通常是对经典逻辑的扩展。该项目的主要目标是为反事实的证明论语义的发展做出贡献,从直觉(或建设性)的角度来看,这是可以接受的。因此,该项目进入了一个几乎未被探索的研究领域。它将以一种关于反事实的证明论观点来阐述,从推理和证明的方法论至上开始。粗略地说,在这个角度上,反事实的含义是根据建设性的反事实推理的证明论结构来解释的,在适当的结构证明系统中,该结构指导我们从反事实A的前件到其后件B。该项目将在申请人在先前工作中发展的亚原子自然演绎框架的基础上继续进行。一个主要的要求是想要的证明论语义学是否适合分析自然语言中的反事实。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Bartosz Wieckowski其他文献
Dr. Bartosz Wieckowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Bartosz Wieckowski', 18)}}的其他基金
Proof-Theoretic Foundations of Intensional Semantics. Counterfactuals of belief and knowledge
内涵语义学的证明理论基础。
- 批准号:
319239199 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Proof-theoretic semantics of intensional transitive verbs
内涵及物动词的证明理论语义
- 批准号:
214880918 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Game-theoretic analysis of stable coalition structure in the presence of cooperation and competition
合作与竞争下稳定联盟结构的博弈论分析
- 批准号:
19K23206 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Game theoretic analysis of product development, distribution, and marketing methods according to a market structure
根据市场结构对产品开发、分销和营销方法进行博弈论分析
- 批准号:
26380320 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual