Set-theoretic Structure of Compact Topological Spaces

紧拓扑空间的集合论结构

基本信息

  • 批准号:
    RGPIN-2016-06541
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

This research project concerns abstract mathematical spaces. In particular, we look to discover which types of such spaces can be said to exist (in the mathematical sense of the word). We also look at when these spaces can exist as sub-spaces of well-known spaces such as the common real line. As a precise example, if the pairs of real numbers are coloured with two colours, which kind of spaces will appear as sets for which all their pairs have the same colour?***Many of the problems here are difficult in the sense that there are many statement about these spaces which can neither be proved nor refuted in the usual mathematical sense, with the usual mathematical assumptions. Moreover, we can prove that there can be no proof and we can also prove that there can be no refutation. This has serious implications for the study of the limitations on the strength of the mathematical method of inquiry.*** **
这个研究项目涉及抽象数学空间。特别是,我们希望发现哪些类型的空间可以说是存在的(在数学意义上的话)。我们还研究了这些空间何时可以作为公知空间(如公共真实的直线)的子空间存在。作为一个精确的例子,如果真实的数对被涂上两种颜色,那么哪种空间将显示为所有对都具有相同颜色的集合?*这里的许多问题是困难的,在这个意义上,有许多声明,这些空间既不能证明,也不能反驳在通常的数学意义上,与通常的数学假设。此外,我们可以证明没有证据,我们也可以证明没有反驳。这对于研究数学探究方法的局限性具有重要意义。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiss, William其他文献

Strong community-based health systems and national governance predict improvement in coverage of oral rehydration solution (ORS): a multilevel longitudinal model
  • DOI:
    10.7189/jogh.10.010503
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Andrus, Althea;Cohen, Robert;Weiss, William
  • 通讯作者:
    Weiss, William
Saving Mothers, Giving Life: It Takes a System to Save a Mother (Republication)
  • DOI:
    10.9745/ghsp-d-19-00092
  • 发表时间:
    2019-03-22
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Conlon, Claudia Morrissey;Serbanescu, Florina;Weiss, William
  • 通讯作者:
    Weiss, William
Measuring results of humanitarian action: adapting public health indicators to different contexts.
  • DOI:
    10.1186/s13031-022-00487-5
  • 发表时间:
    2022-10-14
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Altare, Chiara;Weiss, William;Ramadan, Marwa;Tappis, Hannah;Spiegel, Paul B.
  • 通讯作者:
    Spiegel, Paul B.
Availability of health facilities and utilization of maternal and newborn postnatal care in rural Malawi
  • DOI:
    10.1186/s12884-019-2534-x
  • 发表时间:
    2019-12-17
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kim, Eunsoo Timothy;Singh, Kavita;Weiss, William
  • 通讯作者:
    Weiss, William
In Vivo Evaluation of a Physiologic Control System for Rotary Blood Pumps Based on the Left Ventricular Pressure-Volume Loop.
  • DOI:
    10.1097/mat.0000000000001619
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Cysyk, Joshua;Jhun, Choon-Sik;Newswanger, Ray;Pae, Walter;Izer, Jenelle;Flory, Heidi;Reibson, John;Weiss, William;Rosenberg, Gerson
  • 通讯作者:
    Rosenberg, Gerson

Weiss, William的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiss, William', 18)}}的其他基金

Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
  • 批准号:
    RGPIN-2016-06541
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
  • 批准号:
    3185-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了