Analytic approach to nonperturbative aspects of gauge theories
规范理论非微扰方面的分析方法
基本信息
- 批准号:13135203
- 负责人:
- 金额:$ 4.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To have better understandings about nonperturbative aspects of guage field theories such as topological structure, constructive formulation, supersymmetry and quark confimenent it is helpful to develop analytical methods such as lattice gauge theory and effective field theory approaches.In lattice gauge theory approach we investigated chiral gauge theories based on lattice Dirac operator satisfying the Ginsparg-Wilson relation and made it clear the topological structure of lattice gauge fields (Fujiwara). Furthermore, we developeded a cohomological method to classify topological invariants. This tourned out to be useful to facilitate construction of chiral U(1) gauge theories on the lattice. Furthermore, we gave a concrete construction of the fermion measure for SU(2)xU(1) electroweak gauge theory on the lattice (Kikukawa). We also investigated lattice regularization of supersymmetric gauge theories and gave a lattice formulation of N=(2, 2) supersymmetric Yang-Mills theory in lower dimensions (Suzuki).The topological structure of abelian gauge theories on a periodic lattice can be understood from abelian gauge theory on a torus. We investigated Dirac operator zero-modes on a torus with a uniform magnetic background in arbitrary even dimensions (Fujiwara). The twisted boundary conditions for the wave functions can be resolved by making use of the geometric nature of the torus. The eigenvalue problem can be solved completely. We found that a set of zero-mode with a desired chirality appear and the degeneracy of the zero-modes can be understood from the magnetic translation symmetry of the background gauge field. Our results are perfectly consistent with the index theorem.In effective field theory approach we investigated Cho-Faddeev-Niemi decomposition of Yang-Mills fields and explained the mechanism of quark confinement by reformulating the theory in terms of the nonlinear field transformations (Kondo).
为了更好地理解规范场论的非微扰方面,如拓扑结构、构造公式、超对称性和夸克约束,有助于发展格子规范理论和有效场论方法等分析方法。在格子规范理论方法中,我们研究了基于满足 Ginsparg-Wilson 关系的格子狄拉克算子的手性规范理论,并明确了规范场理论的拓扑结构。 晶格规范场(藤原)。此外,我们开发了一种上同调方法来对拓扑不变量进行分类。事实证明,这对于促进在晶格上构建手性 U(1) 规范理论很有用。此外,我们给出了格子(Kikukawa)上SU(2)xU(1)电弱规范理论的费米子测度的具体构造。我们还研究了超对称规范理论的晶格正则化,并给出了低维 N=(2, 2) 超对称杨-米尔斯理论的格子公式(Suzuki)。周期晶格上的阿贝尔规范理论的拓扑结构可以从环面上的阿贝尔规范理论来理解。我们研究了任意偶数维度上具有均匀磁场背景的圆环上的狄拉克算子零模式(Fujiwara)。波函数的扭曲边界条件可以通过利用环面的几何性质来解决。特征值问题就可以得到彻底解决。我们发现出现了一组具有所需手性的零模,并且可以从背景规范场的磁平移对称性来理解零模的简并性。我们的结果与指数定理完全一致。在有效场论方法中,我们研究了Yang-Mills场的Cho-Faddeev-Niemi分解,并通过用非线性场变换(Kondo)重新表述理论来解释夸克禁闭机制。
项目成果
期刊论文数量(277)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BRST quantization of the Yang-Mills theory in the Cho-Faddeev Niemi decomposition
Cho-Faddeev Niemi 分解中 Yang-Mills 理论的 BRST 量化
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.-I.Kondo;T.Murakami;T.Shinohara
- 通讯作者:T.Shinohara
A physical meaning of mixed gluon-ghost condensate of mass dimension two
质量维二混合胶子鬼凝聚体的物理意义
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:K.Ichikawa;M.Kawasaki;K.-I.Kondo
- 通讯作者:K.-I.Kondo
On the Construction of Electroweak Gauge Theory
论弱电规范理论的构建
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Y. Kikukawa;Y Nakayama;H. Suzuki
- 通讯作者:H. Suzuki
Domain wall fermion and chiral gauge theories on the lattice with exact gauge invariance
具有精确规范不变性的晶格的畴壁费米子和手性规范理论
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:K. Hayasaka;R. Nakayama;Y. Takaya;Y. Kikukawa
- 通讯作者:Y. Kikukawa
Gauge anomaly cancellations in SU(2)(L) x U(1)(Y) electroweak theory on the lattice
格子上 SU(2)(L) x U(1)(Y) 电弱理论中的规范异常抵消
- DOI:
- 发表时间:2001
- 期刊:
- 影响因子:0
- 作者:Y. Kikukawa;Y. Nakayama
- 通讯作者:Y. Nakayama
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIWARA Takanori其他文献
FUJIWARA Takanori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIWARA Takanori', 18)}}的其他基金
Development of cup type grinding wheel for cemented carbaide feature of deep depth of cut compare to cutting and anti grazing
硬质合金杯型砂轮的研制,具有切深大、抗擦伤的特点
- 批准号:
26420051 - 财政年份:2014
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigations of anomalies and the undex theorem in lattice chiral gauge theories based on noncommutative differential geomerty
基于非交换微分几何的格子手征规范理论中的反常现象及UNDEX定理研究
- 批准号:
13640258 - 财政年份:2001
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation on supersymmetric Pauli-Villars regularization for supersymmetric standard models
超对称标准模型的超对称Pauli-Villars正则化研究
- 批准号:
08640348 - 财政年份:1996
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Lattice Gauge Theory at the Intensity Frontier
强度前沿的格子规范理论
- 批准号:
2310571 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Continuing Grant
Graphical Methods for Ising Lattice Gauge Theory
Ising 格子规范理论的图解方法
- 批准号:
575522-2022 - 财政年份:2022
- 资助金额:
$ 4.22万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Tensor network models in lattice gauge theory
格子规范理论中的张量网络模型
- 批准号:
573579-2022 - 财政年份:2022
- 资助金额:
$ 4.22万 - 项目类别:
University Undergraduate Student Research Awards
The photonic lattice gauge theory emulator
光子晶格规范理论模拟器
- 批准号:
2644165 - 财政年份:2021
- 资助金额:
$ 4.22万 - 项目类别:
Studentship
Lattice Gauge Theory at the Intensity Frontier
强度前沿的格子规范理论
- 批准号:
2013064 - 财政年份:2020
- 资助金额:
$ 4.22万 - 项目类别:
Standard Grant
Study on the realization of gauge and flavor symmetries in chiral lattice gauge theory
手性格子规范理论中规范对称性和风味对称性的实现研究
- 批准号:
19K03821 - 财政年份:2019
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lattice Gauge Theory at the Intensity Frontier
强度前沿的格子规范理论
- 批准号:
1719626 - 财政年份:2017
- 资助金额:
$ 4.22万 - 项目类别:
Standard Grant
Lattice Gauge Theory at the University of the Pacific 2016-2019
太平洋大学格子规范理论 2016-2019
- 批准号:
1620845 - 财政年份:2016
- 资助金额:
$ 4.22万 - 项目类别:
Standard Grant
Classical lattice gauge theory
经典晶格规范理论
- 批准号:
482420-2015 - 财政年份:2015
- 资助金额:
$ 4.22万 - 项目类别:
University Undergraduate Student Research Awards
Lattice Gauge Theory at the Intensity Frontier
强度前沿的格子规范理论
- 批准号:
1414614 - 财政年份:2014
- 资助金额:
$ 4.22万 - 项目类别:
Continuing Grant














{{item.name}}会员




