Investigations of anomalies and the undex theorem in lattice chiral gauge theories based on noncommutative differential geomerty

基于非交换微分几何的格子手征规范理论中的反常现象及UNDEX定理研究

基本信息

  • 批准号:
    13640258
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

Based on the Dirac operator satisfying the Ginsparg-Wilson relation, we have investigated the topological structures of lattice chiral gauge theories and their roles in quantum theory The configuration space of any lattice fields cannot have nontrivial topological structure since any field configurations can be continuously deformed into the trivial one. By restricting the configurations by imposing a kind of smoothness condition it is possible to introduce topologically nontrivial structures. In the case of gauge fields the effects of such nontrivial topological structures can be proved by coupling chiral lattice fermions.In vector-type massless gauge theories like QCD we can formulate chirally symmetric lattice action in terms of the overlap Dirac operator. In this case the fermion measure cannot be chirally symmetric but yields chiral anomaly in the form of Jacobian. The overlap Dirac operator is not well-defined over the entire configuration space of the lattice gauge fields but is … More defined only for smooth configurations. This implies that the configuration space of the lattice fields where the theory is well-defined is disconnected into several connected components. We have numerically analyzed the spectral flows of hermitian Wilson-Dirac operator for abelian gauge backgrounds and shown that the index of the lattice Dirac operator changes in accord with the change of the topological charge for gauge field that can be considered smooth. We have also established the chiral anomaly in the classical continuum limit for the nonabelian gauge backgrounds in arbitrary even dimensions by evaluating the Jacobian of the fermion measure under the chiral transformations.The smoothness condition may also introduces notrivial topological structure like a hole in a connected component. We have investigated the effects of such topological structure by coupling chiral fermions and have succeeded in constructing the Wess-Zumino-Witten action. By doing this we have established the existence of nontrivial. topological structure even in a connected component that is related with the gauge anomalies. Less
基于满足Ginsparg-Wilson关系的Dirac算符,我们研究了格点手征规范场的拓扑结构及其在量子理论中的作用。任何格点场的位形空间都不可能具有非平凡的拓扑结构,因为任何场的位形都可以连续地变形为平凡的。通过施加一种光滑条件来限制组态,就有可能引入拓扑非平凡结构。在规范场的情况下,这种非平凡拓扑结构的效应可以通过耦合手征格点费米子来证明,在矢量型无质量规范场理论如QCD中,我们可以用重叠Dirac算符来表示手征对称格点作用量。在这种情况下,费米子测度不能是手征对称的,但会产生雅可比矩阵形式的手征反常。重叠狄拉克算子在格点规范场的整个位形空间上并没有很好的定义,但 ...更多信息 仅为平滑配置定义。这意味着格场的位形空间在理论定义良好的地方是不连接成几个连通分量的。数值分析了阿贝尔规范场背景下厄米Wilson-Dirac算符的谱流,证明了格点Dirac算符的指数随规范场拓扑荷的变化而变化,这种变化雅阁。通过计算费米子测度在手征变换下的雅可比矩阵,我们还建立了任意偶数维非交换规范背景在经典连续极限中的手征反常,光滑条件也可以引入连通分量中的空穴等非平凡拓扑结构.我们通过耦合手征费米子研究了这种拓扑结构的影响,并成功地构造了Wess-Zumino-维滕作用量。通过这样做,我们已经建立了非平凡的存在性。拓扑结构,甚至在一个连接的组件,是有关的规范异常。少

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Domain Wall Fermion and CP Symmetry Breaking
畴壁费米子和 CP 对称性破缺
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuo Fujikawa;Hiroshi Suzuki
  • 通讯作者:
    Hiroshi Suzuki
Kazuo Fujikawa, Hiroshi Suzuki: "Anomalies, local counter terms, and bosonization"Rhysics Report. (発表予定). (2003)
Kazuo Fujikawa、Hiroshi Suzuki:“异常、局部反术语和玻色化”Rhysics Report(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Majorana and Majorana-Weyl Fermions in Lattice Gauge Theory
格子规范理论中的马约拉纳费米子和马约拉纳-韦尔费米子
K.Fujikawa, M.Ishibashi, H.Suzuki: "CP breaking in lattice chiral gauge theory"Nucl.Phys.B (proc.Suppl.). 119. 781-783 (2003)
K.Fujikawa、M.Ishibashi、H.Suzuki:“晶格手性规范理论中的 CP 断裂”Nucl.Phys.B(proc.Suppl.)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takanori Fujiwara: "A Numerical Study of Spectral Flows of the Hermitian Wilson-Dirac Operator and the Index Theorem in Abelian Gauge Theories on Finite Lattices"Pngress of Theoretical Physics. 107・1. 163-175 (2002)
Takanori Fujiwara:“埃尔米特威尔逊-狄拉克算子的谱流和有限格子阿贝尔规范理论中的指数定理的数值研究”理论物理进展107・1(2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUJIWARA Takanori其他文献

FUJIWARA Takanori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUJIWARA Takanori', 18)}}的其他基金

Development of cup type grinding wheel for cemented carbaide feature of deep depth of cut compare to cutting and anti grazing
硬质合金杯型砂轮的研制,具有切深大、抗擦伤的特点
  • 批准号:
    26420051
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytic approach to nonperturbative aspects of gauge theories
规范理论非微扰方面的分析方法
  • 批准号:
    13135203
  • 财政年份:
    2001
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Investigation on supersymmetric Pauli-Villars regularization for supersymmetric standard models
超对称标准模型的超对称Pauli-Villars正则化研究
  • 批准号:
    08640348
  • 财政年份:
    1996
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Situated Anomaly Detection in an Open Environment
在开放环境中进行异常检测
  • 批准号:
    FT230100121
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    ARC Future Fellowships
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
  • 批准号:
    2338642
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Temporal Graph Mining for Anomaly Detection
用于异常检测的时间图挖掘
  • 批准号:
    DP240101547
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Projects
Federated embedding models for privacy-preserving anomaly detection in bank transactions
用于银行交易中隐私保护异常检测的联合嵌入模型
  • 批准号:
    900260
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative R&D
Representation Learning for Deep Anomaly Detection
用于深度异常检测的表示学习
  • 批准号:
    23K11222
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Error Detection of Utterances for Non-native Speakers Using Deep Anomaly Detection Technology
使用深度异常检测技术对非母语人士的话语进行错误检测
  • 批准号:
    23K11238
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
ATD: Predictive Anomaly Detection for Spatio-Temporal Data with Multidimensional Persistence
ATD:具有多维持久性的时空数据的预测异常检测
  • 批准号:
    2220613
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Investigation of the flavor anomaly problem by the world's highest luminosity accelerator experiment
全球最高光度加速器实验研究风味异常问题
  • 批准号:
    23H05433
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了