Regularization strategies for interpretable deep models and robust explanations with application to genomics

可解释深度模型的正则化策略和应用于基因组学的稳健解释

基本信息

项目摘要

One of the prevailing concepts to achieve transparency in already trained machine learning models is explanation through attribution. Its aim is to explain which input dimensions have been most important for the model to arrive at its prediction for an individual sample. Such explanations can be visualized and provided to the human user for verification and interpretation. While successfully used in many applications, relevance scores assigned to each input variable convey only limited information and may also be affected by various types of noise, rendering them insufficient to gain deeper insights into the complex relations in the data and the functioning of the model. Additionally, explanations may be correct, but be intuitively not understandable to humans and as such of limited use, e.g., when the model operates on an input domain which does not correspond to human sensory input.The goal of this project is to develop novel methods for making explanations more robust and readable for the human expert. We will address both the impact of the model and the explanation method itself. First we will investigate the effect of different parameters guiding the model training as well as the use of model regularization techniques for improving explanations with respect to desirable properties such as (group) sparsity or robustness. Next, we will directly compare and suggest improvements for current explainable AI techniques, e.g., using methods from robust statistics. We will develop post-processing methods for explanations, making them more readable for the human expert, via techniques which help improve the quality and information content of explanations, or which will provide information on the population. In another research direction, we will connect uncertainty with explanation in order to improve the latter. In particular, we will reconsider the current deterministic form of explaining predictions and combine the concept of uncertainty and explanation in order to generate explanation distributions, showing the whole range of different strategies to arrive at a prediction.Our interest and application lies in molecular sequence data, specifically to identify and understand sequence patterns that influence gene expression via different mechanisms of gene regulation. Here, (redundant) combinations of features may lead to an observed effect. While a single explanation would only relate to a part of the underlying biology, an explanation distribution provides the full picture. In summary, by developing novel regularization techniques and global interpretation methods, we expect this project to provide new techniques that lead to more robust and complete explanations, as well as to humanly accessible insights into the model's prediction strategies.
在已经训练好的机器学习模型中实现透明度的一个流行概念是通过归因进行解释。其目的是解释哪些输入维度对模型得出单个样本的预测最重要。这样的解释可以被可视化并提供给人类用户用于验证和解释。虽然在许多应用中成功使用,但分配给每个输入变量的相关性得分仅传达有限的信息,并且还可能受到各种类型的噪声的影响,使其不足以深入了解数据中的复杂关系和模型的功能。此外,解释可能是正确的,但直观上是人类无法理解的,因此用途有限,例如,这个项目的目标是开发新的方法,使解释更强大和可读的人类专家。我们将讨论模型的影响和解释方法本身。首先,我们将研究指导模型训练的不同参数的影响,以及使用模型正则化技术来改善对理想属性(如(组)稀疏性或鲁棒性)的解释。接下来,我们将直接比较并建议改进当前可解释的AI技术,例如,使用稳健统计学的方法。我们将开发解释的后处理方法,通过有助于提高解释的质量和信息内容或提供人口信息的技术,使人类专家更具可读性。在另一个研究方向,我们将不确定性与解释联系起来,以改善后者。特别是,我们将重新考虑目前的确定性形式的解释预测和联合收割机的不确定性和解释的概念,以产生解释分布,显示了整个范围的不同的策略,以达到prediction.Our兴趣和应用在于在分子序列数据,特别是识别和理解序列模式,通过不同的基因调控机制影响基因表达。这里,特征的(冗余)组合可能导致观察到的效果。虽然一个单一的解释只涉及一部分潜在的生物学,但一个解释分布提供了全貌。总之,通过开发新的正则化技术和全局解释方法,我们希望该项目能够提供新的技术,从而获得更强大和完整的解释,以及对模型预测策略的人性化见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Uwe Ohler其他文献

Professor Dr.-Ing. Uwe Ohler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Uwe Ohler', 18)}}的其他基金

Control of mRNA fate by mRNP acetylation
通过 mRNA 乙酰化控制 mRNA 的命运
  • 批准号:
    313024148
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Epigenomic mapping of myogenic regulation in human muscle development
人类肌肉发育中生肌调节的表观基因组图谱
  • 批准号:
    426120627
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
  • 批准号:
    82372743
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
放疗通过激活GSDMD诱发细胞焦亡促进肿瘤再增殖的机制研究及干预策略探讨
  • 批准号:
    82373299
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
面向人工智能生成内容的风险识别与治理策略研究
  • 批准号:
    72304290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Innovative Double Patterning Strategies for Integrated Circuit Manufacture
集成电路制造的创新双图案化策略
  • 批准号:
    LP230100313
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Gender Affirmation in Childhood: Protective Factors and Strategies
童年时期的性别肯定:保护因素和策略
  • 批准号:
    DP240101695
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
STrAtegies for RelaTives (START) ARC Accelerator
相关策略 (START) ARC 加速器
  • 批准号:
    ES/Y011139/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
  • 批准号:
    2324401
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigation of crosstalk between Fanconi Anemia pathway and ATM for novel therapeutic strategies of chemoresistant ALT-positive high-risk neuroblastoma
范可尼贫血通路与 ATM 之间的串扰研究,用于化疗耐药 ALT 阳性高危神经母细胞瘤的新治疗策略
  • 批准号:
    24K10442
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Are family firms in Japan resilient to economic shock? Digging further by family types, management strategies, and earnings quality.
日本的家族企业能否抵御经济冲击?
  • 批准号:
    24K00297
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
日本の女性の政治参画推進策の現状分析―Non-quota strategiesに着目して
日本促进妇女参政措施现状分析——以非配额策略为中心
  • 批准号:
    24K15567
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gut immunity: Unraveling Mechanisms and Strategies for Neonatal Intestinal Disorder
肠道免疫:揭示新生儿肠道疾病的机制和策略
  • 批准号:
    502588
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了