Verification of Anomaly Detectors
异常检测器的验证
基本信息
- 批准号:498974831
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Anomaly detectors have to work safely and reliably when deployed in safety-critical applications, such as chemical plants. Failure to report anomalies may result in imminent hazards to the environment and human life. False alarms during regular operation may result in unnecessary downtime of plants and, thus, substantial financial or scientific costs. Therefore, this project's overall goal is to develop efficient methods to verify (i.e., to prove formally) the safety and reliability of artificial neural networks used in anomaly detection (Project A1) and data generation (Project A4).While the general topic of verifying artificial neural networks has recently started to receive increasing attention, there is a lack of methods for the types of neural networks that will arise in this research unit: neural networks on multi-modal sequential data that are trained in unsupervised learning settings. With this project, we will contribute to closing this gap, thereby substantially advancing the state of the art in neural network verification.First, we will elicit correctness properties that neural networks need to satisfy to operate safely and reliably - both in the context of this research unit and beyond. To this end, we will closely collaborate with Projects A1 and A4 as well as with Projects B1 and B2.Second, we will formalize the elicited correctness properties. This task will entail developing a novel temporal logic, provisionally entitled Neural Temporal Logic (NTL), that we will specifically tailor to neural networks over multi-modal sequential data. With this new logic, it will also become possible - for the first time - to express (and verify) "fuzzy" properties such as "an alarm has to be triggered when the gas in a given pipe starts to condensate".Third, we will develop efficient algorithms to verify neural networks against correctness properties expressed in NTL. We will consider both qualitative verification methods (proving or disproving that a network satisfies a property) and quantitative verification methods (computing the probability of a network satisfying a property). For both settings, we will develop two orthogonal types of verification algorithms: one operating on the actual neural network and one computing property-preserving abstractions. Since one can, in general, not hope that every neural network will immediately satisfy all correctness properties, we intend to also develop techniques that use counterexamples (obtained from failed verification attempts) to "repair" neural networks so that they fulfill the correctness properties. We will evaluate our algorithms empirically on the neural networks produced in Projects A1 and A4.
当部署在安全关键应用(如化工厂)时,异常检测器必须安全可靠地工作。不及时报告异常可能会对环境和人类生命造成迫在眉睫的危害。正常运行中的误报可能导致工厂不必要的停机,从而造成大量的财务或科学成本。因此,该项目的总体目标是开发有效的方法来验证(即正式证明)用于异常检测(项目A1)和数据生成(项目A4)的人工神经网络的安全性和可靠性。虽然验证人工神经网络的一般主题最近开始受到越来越多的关注,但缺乏针对该研究单元将出现的神经网络类型的方法:在无监督学习设置中训练的多模态序列数据的神经网络。通过这个项目,我们将有助于缩小这一差距,从而大大推进神经网络验证的最新技术。首先,我们将引出神经网络需要满足的正确性属性,以安全可靠地运行——无论是在本研究单位的背景下还是在其他地方。为此,我们将与A1和A4项目,以及B1和B2项目紧密合作。其次,我们将形式化推导出的正确性属性。这项任务将需要开发一种新的时间逻辑,暂时称为神经时间逻辑(NTL),我们将专门针对多模态序列数据的神经网络进行定制。有了这种新的逻辑,它也将成为可能——这是第一次——表达(并验证)“模糊”属性,比如“当给定管道中的气体开始冷凝时,必须触发警报”。第三,我们将开发有效的算法来验证神经网络是否符合NTL中表达的正确性。我们将考虑定性验证方法(证明或否定网络满足某一属性)和定量验证方法(计算网络满足某一属性的概率)。对于这两种设置,我们将开发两种正交类型的验证算法:一种操作在实际的神经网络上,另一种计算保持属性的抽象。因为一般来说,我们不能指望每个神经网络都能立即满足所有的正确性属性,所以我们还打算开发一些技术,使用反例(从失败的验证尝试中获得)来“修复”神经网络,使其满足正确性属性。我们将在项目A1和A4中产生的神经网络上对我们的算法进行经验评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Daniel Neider其他文献
Professor Dr. Daniel Neider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Daniel Neider', 18)}}的其他基金
Temporal Logic Sketching: A Computer-aided Approach to Writing Formal Specifications
时态逻辑草图:一种编写形式规范的计算机辅助方法
- 批准号:
434592664 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Situated Anomaly Detection in an Open Environment
在开放环境中进行异常检测
- 批准号:
FT230100121 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
- 批准号:
2338642 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Temporal Graph Mining for Anomaly Detection
用于异常检测的时间图挖掘
- 批准号:
DP240101547 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Federated embedding models for privacy-preserving anomaly detection in bank transactions
用于银行交易中隐私保护异常检测的联合嵌入模型
- 批准号:
900260 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Representation Learning for Deep Anomaly Detection
用于深度异常检测的表示学习
- 批准号:
23K11222 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Error Detection of Utterances for Non-native Speakers Using Deep Anomaly Detection Technology
使用深度异常检测技术对非母语人士的话语进行错误检测
- 批准号:
23K11238 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
ATD: Predictive Anomaly Detection for Spatio-Temporal Data with Multidimensional Persistence
ATD:具有多维持久性的时空数据的预测异常检测
- 批准号:
2220613 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Investigation of the flavor anomaly problem by the world's highest luminosity accelerator experiment
全球最高光度加速器实验研究风味异常问题
- 批准号:
23H05433 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)














{{item.name}}会员




