Research on Practical Sign Language Interpretation by integration of image processing of hands and other information
手部图像处理与其他信息融合的实用手语解读研究
基本信息
- 批准号:16091204
- 负责人:
- 金额:$ 13.06万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Color is used for extraction of hands and face regions. Because the color of these regions may be varied depending on persons, we developd a method of determining the skin color region in a color space. In this method, approximate regions are first extracted using an apriori skin color region. This region is refined based on the properties of extracted hands and face regions.In addition, we develop a method to avoid inclusion of the background colors while hands are moving quickly.2. When hands and face overlap, the face region is first determined in the skin region, and the rest of the skin region is searched for hands. Because the face region is not determned precisely, the certainty of the face region is used for matching hads templates in the skin region.3. We developed a method of synthesizing sign language samples from a set of real samples to increase samples for HMM learning. Although impovement of recognition rate is proved by experiments, the amount of improvement is small. One reason is that the features of synthesized samples are not suitable because of improper feature extraction. We imporved our feature extraction method.4. For recognition of sign language words, we used HMM without branching. Because the features of the same sign language word varies depending on persons, we had to prepare multiple models. We have developed a method of building HMM with branching to facilitate models of multiple sign language features.5. In order to recognize face expressions for sign language recognition, we developed a method of determining the position and shape of face parts, and detecting useful features of face face expressions. In a small scale experiment, typical expressions such ad question, joy, and anger are identified by the method.
1.颜色用于提取手部和面部区域。由于这些区域的颜色可能因人而异,因此我们开发了一种在颜色空间中确定肤色区域的方法。在该方法中,首先使用先验肤色区域提取近似区域。该区域是根据提取的手和面部区域的属性进行细化的。此外,我们开发了一种方法来避免在手快速移动时包含背景颜色。2.当手和脸部重叠时,首先在皮肤区域中确定脸部区域,然后在皮肤区域的其余部分中搜索手。由于人脸区域不能精确确定,所以利用人脸区域的确定性来匹配皮肤区域中的hads模板。 3.我们开发了一种从一组真实样本中合成手语样本的方法,以增加 HMM 学习的样本。虽然通过实验证明了识别率的提高,但是提高的幅度很小。原因之一是由于特征提取不当,导致合成样本的特征不合适。我们改进了特征提取方法。4.为了识别手语单词,我们使用不带分支的 HMM。由于同一手语单词的特征因人而异,因此我们必须准备多个模型。我们开发了一种构建带有分支的 HMM 的方法,以促进多种手语特征的模型。 5.为了识别面部表情以进行手语识别,我们开发了一种确定面部部位的位置和形状并检测面部表情的有用特征的方法。在小规模实验中,该方法识别了诸如广告问题、喜悦和愤怒等典型表情。
项目成果
期刊论文数量(50)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
動画像を用いた手指の三次元形状の推定
使用视频图像估计手指的 3D 形状
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:松下淳一(山本弘;長谷部由起子と共著);松下 淳一;松下 淳一;神前 禎;浜田康志;松尾直志;Kaoru NAKAZONO;Tadashi Matsuo;Kaoru NAKAZONO;中園薫;C. Izumi;Atsushi Matsumono;今井章博;Kazuyuki Kanda;井上真紀;神田和幸;Kaoru NAKAZONO;Yuji NAGASHIMA;C. Izumi;Maki Inoue;Kaoru NAKAZONO;Kazunari Morimoto;K.Kawahigashi;和泉智恵;寺内美奈;神田和幸;中園薫;長嶋祐二;Eishi Watanabe;長嶋祐二;K. Morimoto;黒川隆夫;神田和幸;Kaoru NAKAZONO;Yuji NAGASHIMA;Eishi Watanabe;Yuji NAGASHIMA;K. Morimoto;K. Takao;Kazuyuki Kanda;長嶋祐二;今井章博;Eishi Watanabe;島田伸敬
- 通讯作者:島田伸敬
Image-Based Measurement of Human Gesture and Its Applications
基于图像的人体手势测量及其应用
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Nobutaka Shimada;Yoshiaki Shirai
- 通讯作者:Yoshiaki Shirai
状態遷移構造の推定に基づく手話認識
基于状态转移结构估计的手语识别
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:松下淳一(山本弘;長谷部由起子と共著);松下 淳一;松下 淳一;神前 禎;浜田康志;松尾直志
- 通讯作者:松尾直志
Face, Gesture, and Action Recognition Robust Face Recognition under Various Illumination Conditions
人脸、手势和动作识别 各种光照条件下的鲁棒人脸识别
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:松下淳一(山本弘;長谷部由起子と共著);松下 淳一;松下 淳一;神前 禎;浜田康志;松尾直志;Kaoru NAKAZONO;Tadashi Matsuo;Kaoru NAKAZONO;中園薫;C. Izumi;Atsushi Matsumono
- 通讯作者:Atsushi Matsumono
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIRAI Yoshiaki其他文献
SHIRAI Yoshiaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIRAI Yoshiaki', 18)}}的其他基金
Vision-based Sign Language Recognition in Complicated Background and Occlusion
复杂背景和遮挡下基于视觉的手语识别
- 批准号:
15300058 - 财政年份:2003
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tracking of multiple persons in a wide area by partial information obtained from distributed active cameras
通过从分布式主动摄像机获得的部分信息来跟踪大范围内的多人
- 批准号:
11450161 - 财政年份:1999
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Real-time Shape and Posture Estimation of Articulated Objects Based on Multiple kinds of Uncertain Feature Information Obtained from Image Sequences
基于图像序列获得的多种不确定特征信息的铰接物体的实时形状和姿态估计
- 批准号:
11555072 - 财政年份:1999
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
3-D Shape and Pose Estimation of Articulated Objects From Image Sequences
根据图像序列估计铰接物体的 3-D 形状和姿态
- 批准号:
09650471 - 财政年份:1997
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tightly Coupled Sensor-Behavior Approaches for Real World Recognition
用于现实世界识别的紧耦合传感器行为方法
- 批准号:
07245105 - 财政年份:1995
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Experimental Study on Realtime Object Tracking Stystem
实时目标跟踪系统实验研究
- 批准号:
06555071 - 财政年份:1995
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Segmentation and Tracking of Moving Objects in a Image Sequence
图像序列中运动物体的分割和跟踪
- 批准号:
04452194 - 财政年份:1992
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Experimental Research on Intelligent Image Segmentation System
智能图像分割系统实验研究
- 批准号:
01850077 - 财政年份:1990
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
Description of Three-Dimensional Environment by Reliable Stereo Vision
通过可靠的立体视觉描述三维环境
- 批准号:
02452164 - 财政年份:1990
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Development of a real-time evaluation method using an AI-based image processing system in liver tumor ablaition
基于人工智能的图像处理系统开发肝脏肿瘤消融实时评估方法
- 批准号:
23K11923 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of big data analysis platform for fish behavior in the sea by image processing, change detection, and machine learning techniques
利用图像处理、变化检测、机器学习技术构建海洋鱼类行为大数据分析平台
- 批准号:
23K14005 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing next-generation, AI-enabled, medical image processing for multiple sclerosis clinical trials and routine care.
开发用于多发性硬化症临床试验和日常护理的下一代人工智能医学图像处理。
- 批准号:
2877679 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Studentship
CRII: SHF: RUI: Custom Hardware Accelerators for Privacy-Preserving Image Processing
CRII:SHF:RUI:用于保护隐私的图像处理的定制硬件加速器
- 批准号:
2347253 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Standard Grant
Image Processing Techniques for the Segmentation, Fusion, and Registration of Ultrasound Images from Intracavitary Gynecologic Brachytherapy Procedures
用于腔内妇科近距离放射治疗过程中超声图像的分割、融合和配准的图像处理技术
- 批准号:
557687-2021 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Postdoctoral Fellowships
Development of an Image Processing Algorithm to Customize Cochlear Implant Procedures
开发用于定制人工耳蜗植入程序的图像处理算法
- 批准号:
548003-2020 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Creating a Technological Infrastructure for the Digital Restoration of Cultural Properties Using Statistical Image Processing and Deep Learning
利用统计图像处理和深度学习为文化财产数字化修复创建技术基础设施
- 批准号:
22H00748 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and utilization of digital / analog teaching materials using 3D image processing and 3D printers for biological education
利用3D图像处理和3D打印机进行生物教育的数字/模拟教材的开发和利用
- 批准号:
22K02988 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I-Corps: Image processing platform to identify photosynthetic pigment density to measure nitrogen content and manage fertilizer (Smart Sustainable Fertilizer Manager)
I-Corps:图像处理平台,用于识别光合色素密度,测量氮含量并管理肥料(智能可持续肥料管理器)
- 批准号:
2227256 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Standard Grant
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
- 批准号:
RGPIN-2018-03966 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Discovery Grants Program - Individual