Nature of Proton Transfer in Water near Interfaces
界面附近水中质子转移的性质
基本信息
- 批准号:500244608
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:WBP Fellowship
- 财政年份:2022
- 资助国家:德国
- 起止时间:2021-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Whenever water is used in technological applications ― be it in fuel cells, drug delivery processes, or electro-catalysis ― it is in contact with interfaces. However, water is not just a pure liquid, but rather consists of a finite concentration of hydroxide ions and excess protons depending on the pH value of the liquid. Only if it is fundamentally understood, how such solvated protons and hydroxide ions behave near technologically relevant interfaces, the target-oriented optimization of new technologies will become possible in order to address some of our central societal challenges of the future. This includes diverse processes and applications such as fuel cells, the proton transfer along biological channels, the acidification of our oceans, as well as enzyme catalysis and is, thus, linked to major priorities of the future.In order to elucidate the nature of proton transfer near interfaces, computer simulations are key to complement experiment. Only now the required simulation techniques have become available to accurately and predictively describe the dynamical and reactive character of these species near interfaces on high performance computing resources. By means of quantum simulation techniques, based on new machine learning models, we will obtain a fundamental new understanding of the structure and dynamics of protons and hydroxide ions at interfaces. This includes the mechanism of proton transfer near carbon-based and hexagonal boron nitride 2D materials, but also the question whether excess protons or rather hydroxide ions accumulate at such interfaces. In close collaboration with experimental work, in particular dielectric microscopy and surface sensitive vibrational spectroscopy, a united understanding of these phenomena will be provided as solid foundation for biological processes and technical applications.
每当水被用于技术应用时-无论是燃料电池,药物输送过程还是电催化-它都与界面接触。然而,水不仅仅是纯液体,而是由有限浓度的氢氧离子和过量质子组成,这取决于液体的pH值。只有从根本上理解这些溶剂化质子和氢氧根离子在技术相关界面附近的行为,才有可能对新技术进行有针对性的优化,以解决我们未来的一些核心社会挑战。这包括燃料电池、质子沿着生物通道转移、海洋酸化以及酶催化等各种过程和应用,因此与未来的主要优先事项有关,为了阐明界面附近质子转移的性质,计算机模拟是补充实验的关键。只有现在所需的模拟技术已经成为准确和预测性地描述这些物种的动态和反应特性的界面附近的高性能计算资源。通过量子模拟技术,基于新的机器学习模型,我们将对界面处质子和氢氧根离子的结构和动力学有一个全新的认识。这包括质子在碳基和六方氮化硼2D材料附近转移的机制,但也包括过量质子或氢氧根离子是否在这些界面处积累的问题。与实验工作密切合作,特别是介电显微镜和表面敏感振动光谱,将为这些现象提供统一的理解,为生物过程和技术应用提供坚实的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Christoph Schran其他文献
Dr. Christoph Schran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
- 批准号:
2400727 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
ProtonsInProteins: A novel approach for studying biological proton transfer
ProtonsInProteins:研究生物质子转移的新方法
- 批准号:
EP/Z000459/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Electrochemically Mediated Carbon Dioxide Separation via Non-Aqueous Proton-Coupled Electron Transfer
职业:通过非水质子耦合电子转移进行电化学介导的二氧化碳分离
- 批准号:
2237096 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Control of proton transfer by radio frequency energy and its application to hydrogen production from organic wastes
射频能量控制质子转移及其在有机废物制氢中的应用
- 批准号:
23K18546 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Research on double tunnel qubits by proton-synchronized electron transfer
质子同步电子转移双隧道量子位研究
- 批准号:
23H01979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAS: Collaborative Research: Steering Proton-Coupled Electron Transfer Processes for Energy Conversion at the Metal Electrode/Porous 3D Material Interface
CAS:合作研究:引导质子耦合电子转移过程在金属电极/多孔 3D 材料界面进行能量转换
- 批准号:
2154919 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CAS: Collaborative Research: Steering Proton-Coupled Electron Transfer Processes for Energy Conversion at the Metal Electrode/Porous 3D Material Interface
CAS:合作研究:引导质子耦合电子转移过程在金属电极/多孔 3D 材料界面进行能量转换
- 批准号:
2154963 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Proton Transfer Reaction Time-of-flight Mass Spectrometer (PTR-ToF-MS)
质子转移反应飞行时间质谱仪 (PTR-ToF-MS)
- 批准号:
495692966 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Major Research Instrumentation
Observation of proton transfer on photocatalyst surface on a short time scale
短时间尺度上光催化剂表面质子转移的观察
- 批准号:
22K05297 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Direct Interrogation of Proton-Coupled Electron Transfer Reaction Dynamics and Mechanisms with Cryogenic Ion and Ultrafast Vibrational Spectroscopies
职业:用低温离子和超快振动光谱直接探究质子耦合电子转移反应动力学和机制
- 批准号:
2044927 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant