CAS: Collaborative Research: Steering Proton-Coupled Electron Transfer Processes for Energy Conversion at the Metal Electrode/Porous 3D Material Interface

CAS:合作研究:引导质子耦合电子转移过程在金属电极/多孔 3D 材料界面进行能量转换

基本信息

  • 批准号:
    2154963
  • 负责人:
  • 金额:
    $ 50.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Professors Matthias Waegele and Junwei (Lucas) Bao of Boston College, and Professor Mariam Ismail of the University of Massachusetts, Boston are studying how to precisely modify electrodes to control electrocatalytic reactions for energy storage. Electrocatalytic processes can store electrical energy from renewable energy sources in the form of liquid or gaseous fuels from abundant, renewable feedstocks such as carbon dioxide or biomass. A principal hurdle for the adoption of this technology is the poor product selectivity of these reactions. These reactions are complex and occur at an interface involving a liquid (the electrolyte) and a solid (the electrode). In this work, the project team will modify this interface, and thus the electrocatalytic activity, by coating the electrodes with a special class of porous material known as metal-organic frameworks (MOFs). The project team will use spectroscopy and advanced computer simulations to gain molecular-level insights into the effects of the MOF overlayers on three model reactions that are central for renewable fuel synthesis: The conversion of water to hydrogen, the conversion of carbon dioxide to carbon monoxide, and conversion of biomass to valuable chemicals and fuels. The results of this research will provide insight into the control of selectivity of electrocatalytic reaction. Further, the team will engage in synergistic activities aimed at promoting the recruitment and retention of underrepresented groups in STEM. Specifically, the team will involve female high-school students and underrepresented undergraduate minority students in this research as part of a summer program, which will expose the participants to state-of-the-art renewable energy research in the areas of synthesis, analytical chemistry, and simulation techniques.On this project, Matthias Waegele and Junwei (Lucas) Bao of Boston College and Mariam Ismail of the University of Massachusetts, Boston are studying and designing 3D active sites at the metal electrode/porous 3D material interface to facilitate desirable reaction pathways of proton-coupled electron transfer (PCET) processes for energy storage and conversion. To this end, the team will coat metal electrodes (Pt and Au) with crystalline metal-organic framework (MOF) overlayers and investigate the effects of the MOF overlayers on PCET processes. Through systematic variation of the inorganic nodes and organic linkers of the MOFs, the team will aim to understand the effect of the MOF’s chemical and physical properties on PCET. The project will focus on the hydrogen evolution reaction (HER) and the reduction of carbon dioxide to carbon monoxide. Vibrational and Raman spectroscopies will be used to characterize the metal electrode/MOF interface under catalytic conditions. Key properties to be extracted from these measurements will include the interfacial pH, electric double layer charging, MOF-intermediate interactions, interfacial water structure, and local structure of the MOF at the metal surface. Computer simulations will map minimum-energy reaction pathways. On the basis of these investigations, the project aims to establish robust interfacial property-reactivity relationships. Such design rules would serve to guide the choice of synergistic 3D material, electrolyte, and reaction conditions to steer PCET reactions in aqueous electrolytes, and thereby also support the discovery of efficient and selective pathways for renewable fuels formation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,波士顿学院的Matthias Waegele和Junwei (Lucas) Bao教授以及马萨诸塞州波士顿大学的Mariam Ismail教授正在研究如何精确修饰电极来控制电催化反应以实现能量存储。电催化过程可以储存来自可再生能源的电能,以液体或气体燃料的形式,来自丰富的可再生原料,如二氧化碳或生物质。采用这种技术的主要障碍是这些反应的产物选择性差。这些反应很复杂,发生在液体(电解质)和固体(电极)的界面上。在这项工作中,项目团队将通过在电极上涂上一种称为金属有机框架(mof)的特殊多孔材料来修改该界面,从而提高电催化活性。该项目团队将利用光谱学和先进的计算机模拟技术,从分子水平上深入了解MOF覆盖层对三个模型反应的影响,这三个模型反应是可再生燃料合成的核心:水转化为氢、二氧化碳转化为一氧化碳、生物质转化为有价值的化学品和燃料。本研究结果将为电催化反应的选择性控制提供新的思路。此外,该团队将参与旨在促进STEM中代表性不足群体的招聘和保留的协同活动。具体来说,该团队将让女高中生和少数族裔本科生参与这项研究,作为暑期项目的一部分,这将使参与者接触到合成、分析化学和模拟技术领域最先进的可再生能源研究。在这个项目中,波士顿学院的Matthias Waegele和Junwei (Lucas) Bao以及麻省大学波士顿分校的Mariam Ismail正在研究和设计金属电极/多孔3D材料界面上的3D活性位点,以促进质子耦合电子转移(PCET)过程的理想反应途径,用于能量存储和转换。为此,该团队将在金属电极(Pt和Au)上涂覆晶体金属有机框架(MOF)涂层,并研究MOF涂层对PCET工艺的影响。通过MOF的无机节点和有机连接体的系统变化,该团队将致力于了解MOF的化学和物理性质对PCET的影响。该项目将重点关注析氢反应(HER)和将二氧化碳还原为一氧化碳。振动光谱和拉曼光谱将用于表征催化条件下金属电极/MOF界面。从这些测量中提取的关键特性将包括界面pH值、双电层充电、MOF-中间相互作用、界面水结构和金属表面MOF的局部结构。计算机模拟将绘制最小能量反应路径。在这些研究的基础上,该项目旨在建立强有力的界面性质-反应性关系。这些设计规则将有助于指导协同3D材料、电解质和反应条件的选择,以指导PCET在水溶液中的反应,从而也支持发现高效和选择性的可再生燃料形成途径。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Waegele其他文献

Matthias Waegele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Waegele', 18)}}的其他基金

CAREER: Elucidating How the Liquid Side of the Electrochemical Interface Controls Catalytic Selectivity during Carbon Dioxide Reduction
职业:阐明电化学界面的液体侧如何控制二氧化碳还原过程中的催化选择性
  • 批准号:
    1847841
  • 财政年份:
    2019
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
SusChEM: Time Resolved In Situ Infrared Spectroscopy of Intermediates in the Electrochemical Reduction of Carbon Dioxide
SusChEM:二氧化碳电化学还原中间体的时间分辨原位红外光谱
  • 批准号:
    1565948
  • 财政年份:
    2016
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant

相似海外基金

CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-SC: Development of Heavy Atom - Free Photocatalysts for Chemical Reactions
合作研究:CAS-SC:开发用于化学反应的无重原子光催化剂
  • 批准号:
    2247661
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-SC: Electrochemical Approaches to Sustainable Dinitrogen Fixation
合作研究:CAS-SC:可持续二氮固定的电化学方法
  • 批准号:
    2247257
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
  • 批准号:
    2246509
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
  • 批准号:
    2409888
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-SC: Development of Heavy Atom - Free Photocatalysts for Chemical Reactions
合作研究:CAS-SC:开发用于化学反应的无重原子光催化剂
  • 批准号:
    2247662
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了