Application of atomistic simulations to create a Quantitative Structure Property Relationship (QSPR) for predicting the environmental stress cracking of amorphous thermoplastics

应用原子模拟创建定量结构特性关系 (QSPR),用于预测非晶态热塑性塑料的环境应力开裂

基本信息

项目摘要

The aim of the research project is to establish a Quantitative Structure Property Relationship using atomistic simulation to predict the environmental stress cracking of amorphous thermoplastics.In their application, plastic components come into contact with a large number of liquid environmental media, which can significantly influence their properties. This influence can currently not or only insufficiently be considered in the component design, whereby the functional fulfillment of technical plastic components is endangered. The influence of the ambient medium on the material is very diverse and usually acts on the atomistic scale. The most frequent cause of failure is the so-called environmental stress cracking, which describes the premature failure of a polymeric material under mechanical load with simultaneous exposure to a liquid environmental medium. It is characteristic that the stress leading to failure can sometimes be well below the mechanical load limits without media influence.The consideration of the media influence during component development is currently mainly met with time- and cost-intensive experiments, which have to be carried out for every possible plastic/media combination. This motivates the planned project, which aims at the development and validation of a mathematical model for the combination of different material properties with the resulting ageing behaviour regarding the environmental stress cracking. For the construction of this mathematical model, which is called Quantitative Structure Property Relationship, atomistic simulations are mainly used in the form of molecular dynamics simulations in order to be able to represent the mentioned influence of the medium on the atomistic scale.
该研究项目的目的是利用原子模拟建立定量结构性能关系来预测非晶态热塑性塑料的环境应力开裂。在其应用中,塑料部件会接触大量的液体环境介质,这些介质会显著影响其性能。这种影响目前在部件设计中不能考虑或仅考虑得不够,从而危及技术塑料部件的功能实现。环境介质对材料的影响是非常多样的,通常作用于原子尺度。最常见的失效原因是所谓的环境应力开裂,其描述了聚合物材料在机械载荷下同时暴露于液体环境介质的过早失效。在没有介质影响的情况下,导致失效的应力有时可能远低于机械载荷极限。在部件开发过程中考虑介质影响目前主要是通过时间和成本密集型实验来满足的,这些实验必须针对每种可能的塑料/介质组合进行。这激发了计划中的项目,该项目旨在开发和验证不同材料特性与环境应力开裂相关老化行为相结合的数学模型。为了构建这个数学模型,它被称为定量结构性质关系,原子模拟主要以分子动力学模拟的形式使用,以便能够在原子尺度上表示介质的上述影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Christian Hopmann其他文献

Professor Dr.-Ing. Christian Hopmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Christian Hopmann', 18)}}的其他基金

Interactions in laser joining of metals to polymers
金属与聚合物激光连接中的相互作用
  • 批准号:
    417913350
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of a databased model for the prediction of effective mechanical and thermal properties of injection-moulded semi-crystalline thermoplastics by means of an artificial neural network (KNN) taking into account the microstructure
开发数据库模型,通过考虑微观结构的人工神经网络 (KNN) 来预测注塑半结晶热塑性塑料的有效机械和热性能
  • 批准号:
    426052003
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis and modeling of the damage behavior of long-fibre-reinforced semi-crystalline thermoplastics considering fibre length and fibre curvature
考虑纤维长度和纤维曲率的长纤维增强半结晶热塑性塑料的损伤行为分析和建模
  • 批准号:
    416461157
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Simulation of the development of the microstructure of injection-moulded semi-crystalline thermoplastics by means of a multi-scale approach under consideration of shear-induced crystal forms (alpha and beta)
在考虑剪切诱导晶型(α 和 β)的情况下,通过多尺度方法模拟注塑半结晶热塑性塑料的微观结构的发展
  • 批准号:
    408012354
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental and numerical investigations of laminated, fibre reininforced plastics under crash loading
碰撞载荷下层压纤维增强塑料的实验和数值研究
  • 批准号:
    404502442
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development and validation of a method to determine the frequency- and temperature-dependent stiffness and damping properties of plastics for the structure-borne noise simulation more precisely using the example of the for the ultrasonic welding process r
开发和验证一种方法,以确定塑料的与频率和温度相关的刚度和阻尼特性,以使用超声波焊接工艺的示例更精确地进行结构噪声模拟
  • 批准号:
    398244070
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis and modelling of the environmental stress cracking resistance of short fiber reinforced amorphous thermoplastics
短纤维增强非晶态热塑性塑料的耐环境应力开裂性能分析与建模
  • 批准号:
    369874665
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis of the flow paths in a rubber internal mixer in dependency of different process parameters
橡胶密炼机中不同工艺参数的流路分析
  • 批准号:
    377803088
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integrative calculation of the weld strength of plastics parts based on an interdiffusion model presented for laser transmission welding
基于激光透射焊接相互扩散模型的塑料件焊接强度综合计算
  • 批准号:
    321043881
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamental research on foaming of elastomers with water as physical blowing agent and description of mechanisms of foaming
水为物理发泡剂的弹性体发泡基础研究及发泡机理描述
  • 批准号:
    317030171
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

(Inter)facing the Bitter Truth: How to Design Better Interfaces in Next-Gen Batteries using Atomistic Simulations Assisted by Machine-Learning
(交互)面对痛苦的真相:如何使用机器学习辅助的原子模拟设计下一代电池中更好的界面
  • 批准号:
    2886070
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
ERI: Learning the Constitutive Equations of Chemo-Mechanics from Atomistic Simulations
ERI:从原子模拟中学习化学力学本构方程
  • 批准号:
    2138431
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Atomistic and multiscale simulations of next generation energy storage systems
下一代储能系统的原子和多尺度模拟
  • 批准号:
    2890209
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Amorphous Materials by Design through Atomistic Simulations
通过原子模拟设计非晶材料
  • 批准号:
    EP/X016188/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Atomistic Simulations of Novel Materials for the Next-gen All-Solid-State Battery Technology
下一代全固态电池技术新型材料的原子模拟
  • 批准号:
    2594260
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Calculation of the free energy of interaction between clay particles by atomistic simulations
通过原子模拟计算粘土颗粒之间相互作用的自由能
  • 批准号:
    563531-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Atomistic Macroscopic Simulations of Collisional Plasmas
碰撞等离子体的原子宏观模拟
  • 批准号:
    2108505
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Applying deep learning to large-scale quantum mechanical atomistic simulations and electronic structure theory
将深度学习应用于大规模量子力学原子模拟和电子结构理论
  • 批准号:
    518314-2018
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Frontera Travel Grant: Enhanced Atomistic Simulations for Predictive Multi-Scale Modeling Safety Pharmacology Pipeline
Frontera 旅行补助金:用于预测多尺度建模安全药理学管道的增强原子模拟
  • 批准号:
    2032486
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elements: DeepPDB: An open-source automated framework to enable high-fidelity atomistic simulations in unexplored material space
元素:DeepPDB:一个开源自动化框架,可在未探索的材料空间中实现高保真原子模拟
  • 批准号:
    2003808
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了