Amorphous Materials by Design through Atomistic Simulations
通过原子模拟设计非晶材料
基本信息
- 批准号:EP/X016188/1
- 负责人:
- 金额:$ 164.43万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The discovery and design of new technologically relevant materials is a major research goal in the physical sciences. Quantum-mechanical simulations on large supercomputers have brought the computational design of materials within reach: identifying suitable compositions, searching for stable crystal structures, guiding and inspiring experimental discoveries. However powerful, this progress has been largely limited to crystalline materials with long-range structural order and relatively small unit cells. In contrast, the amorphous (non-crystalline) state has been a long-standing challenge for predictive atomistic simulations, which has severely restricted the range of new materials to be discovered. I here propose to overcome this important challenge: by developing machine learning (ML) driven approaches for the atomic-scale modelling, optimisation, and design of multicomponent amorphous materials with desired properties. This ambitious project will leverage the power of both supervised and unsupervised ML algorithms to "learn" and navigate structural space. The first objective is to develop methodology with which to create universally applicable fitting databases for ML interatomic potentials - thereby making multicomponent amorphous materials amenable to realistic atomistic modelling, on par with how crystalline solids are treated today. The second objective is to develop a novel deep learning model, here to be used for predicting solid-state NMR shifts, but with more general implications for ML-based property prediction. Finally, the methodology will be used in computational practice and applied to key materials systems. This project will open up a new degree of realism in the structural modelling and understanding of the amorphous state, provide a wealth of openly available research data, and ultimately enable the computationally driven design of new amorphous materials.
新技术相关材料的发现和设计是物理科学的主要研究目标。大型超级计算机上的量子力学模拟使材料的计算设计触手可及:确定合适的成分,寻找稳定的晶体结构,指导和激发实验发现。然而,这一进展在很大程度上仅限于具有长程结构有序和相对较小的晶胞的晶体材料。相比之下,非晶(非结晶)状态一直是预测原子模拟的长期挑战,这严重限制了新材料的发现范围。我在这里建议克服这一重要挑战:通过开发机器学习(ML)驱动的方法,用于原子尺度建模,优化和设计具有所需特性的多组分非晶材料。这个雄心勃勃的项目将利用监督和无监督ML算法的力量来“学习”和导航结构空间。第一个目标是开发一种方法,用于创建ML原子间势的普遍适用的拟合数据库-从而使多组分非晶材料适合于现实的原子模型,与今天的结晶固体处理方式相同。第二个目标是开发一种新的深度学习模型,用于预测固态NMR位移,但对基于ML的性质预测具有更普遍的意义。最后,该方法将用于计算实践并应用于关键材料系统。该项目将在结构建模和对非晶状态的理解方面开辟新的现实主义程度,提供丰富的公开可用的研究数据,并最终实现新的非晶材料的计算驱动设计。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-platform hyperparameter optimization for machine learning interatomic potentials.
- DOI:10.1063/5.0155618
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Daniel F Thomas du Toit;Volker L. Deringer
- 通讯作者:Daniel F Thomas du Toit;Volker L. Deringer
Synthetic pre-training for neural-network interatomic potentials
- DOI:10.1088/2632-2153/ad1626
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:John L A Gardner;Kathryn T. Baker;Volker L. Deringer
- 通讯作者:John L A Gardner;Kathryn T. Baker;Volker L. Deringer
Synthetic data enable experiments in atomistic machine learning
- DOI:10.1039/d2dd00137c
- 发表时间:2023-06-12
- 期刊:
- 影响因子:0
- 作者:Gardner, John L. A.;Beaulieu, Zoe Faure;Deringer, Volker L.
- 通讯作者:Deringer, Volker L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Volker Deringer其他文献
Volker Deringer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Volker Deringer', 18)}}的其他基金
Modelling and understanding the structure of graphene oxide materials with machine-learning-driven simulations
通过机器学习驱动的模拟来建模和理解氧化石墨烯材料的结构
- 批准号:
EP/V049178/1 - 财政年份:2022
- 资助金额:
$ 164.43万 - 项目类别:
Research Grant
相似国自然基金
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
EU-Funded
Reverse Design of Tuneable 4D Printed Materials for Soft Robotics
用于软体机器人的可调谐 4D 打印材料的逆向设计
- 批准号:
DE240100960 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
Discovery Early Career Researcher Award
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
Research Grant
Deep Learning with Limited Data for Battery Materials Design
电池材料设计中数据有限的深度学习
- 批准号:
EP/Y000552/1 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
Research Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
Continuing Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
- 批准号:
2402407 - 财政年份:2024
- 资助金额:
$ 164.43万 - 项目类别:
Standard Grant