The Locust Ovipositor: A Form Follows Function Study of a Unique Digging Apparatus

蝗虫产卵器:形式服从功能的独特挖掘装置研究

基本信息

项目摘要

Ideal digging and burrowing mechanisms and technologies should be compact in structure, energy-efficient and have low impact on the environment. Several studies presented bioinspired solutions, based on digging apparatuses in nature. Promising methods and structures are found in insect oviposition or egg-laying tools. The ovipositor of grasshoppers and locusts, for once, is a highly specialized structure. Grasshoppers and locusts are rare among insects in having ovipositor that work by opening and closing valves rather than by sliding valves upon each other. We propose a form-follows-function study, characterizing the unique adaptations found in the ovipositor of the female locust. We will investigate the presence of structural and material gradients ovipositors valves, and examine their role role in the digging mechanism, using experiments with the animals, materials science tools and computer simulations. Our overarching aim is to understand the biomechanics of the locust digging valves and engineer bioinspired diggers based on the understanding of the natural system. First, we will observe the digging valves as used by the female locust and follow their ontogeny. We will map the material properties of the digging valves using confocal laser scanning microscopy and spectroscopy. Nanoindentation and nanowear tests will provide quantitative measures of the mechanical properties. We will measure friction forces acting on the locust valves, depending on different granular media, and quantify the energy consumption and energy dissipation during oviposition. Next, we will establish guidelines for structural design, mechanical and surface properties forlocust-inspired diggers. We will use finite elements analysis to determine how changes in the structure and material properties influence its performance. Computer simulations will be utilized to elucidate the load distribution in the female locust valve, taking into account the results of measurements of the forces exerted by the organisms under biological relevant conditions. Finally, we will develop bioinspired diggers based on the knowledge gained. we will3D print the valves in different forms and materials in order to examine the suitability of the natural design to its function. The structural and surface properties will be further adjusted in order to improve and extend the performance of the digger, depending on the digging medium. All research will be conducted in a highly collaborative manner, utilizing the complementary expertise of the research groups. The strength of our collaborative approach isdemonstrated by the many preliminary data obtained. We expect that our joit forces will lead to understanding the structure and function of the digging apparatus of the female locust and furthermore to the development of bio-inspired hybrid soft-stiff robotic diggers that will include injection function, resistance to mechanical damage, granular media specificity and energy minimized operation.
理想的挖掘和挖掘机制和技术应该是结构紧凑、节能和对环境影响小。几项研究提出了基于自然界挖掘设备的生物启发解决方案。在昆虫产卵或产卵工具中发现了有前途的方法和结构。蚱蜢和蝗虫的产卵器,这一次,是一个高度专业化的结构。蝗虫和蚱蜢的产卵器是通过打开和关闭阀门而不是通过滑动阀门来工作的,这在昆虫中是罕见的。我们提出了一个形式遵循功能的研究,其特征的独特的适应性发现在产卵器的女性蝗虫。我们将调查存在的结构和材料梯度产卵器阀,并检查他们的角色在挖掘机制中的作用,使用动物实验,材料科学工具和计算机模拟。我们的首要目标是了解蝗虫挖掘阀的生物力学,并根据对自然系统的理解设计仿生挖掘机。首先,我们将观察雌性蝗虫使用的挖掘阀,并跟踪它们的个体发育。我们将使用共聚焦激光扫描显微镜和光谱学绘制挖掘阀的材料特性。纳米压痕和压痕测试将提供机械性能的定量测量。我们将测量作用在蝗虫阀上的摩擦力,这取决于不同的颗粒介质,并量化产卵过程中的能量消耗和能量耗散。接下来,我们将为蝗虫启发的挖掘机的结构设计、机械和表面特性建立指导方针。我们将使用有限元分析来确定结构和材料特性的变化如何影响其性能。将利用计算机模拟来阐明雌性蝗虫瓣膜中的载荷分布,同时考虑到生物体在生物相关条件下施加的力的测量结果。最后,我们将根据所获得的知识开发仿生挖掘机。我们将以不同的形式和材料3D打印瓣膜,以检查自然设计对其功能的适用性。根据挖掘介质的不同,将进一步调整结构和表面特性,以提高和扩展挖掘机的性能。所有研究都将以高度协作的方式进行,利用研究小组的互补专长。我们的合作方法的力量是由获得的许多初步数据证明的。我们希望我们的joit部队将导致理解的结构和功能的挖掘设备的女性蝗虫,并进一步发展的生物启发的混合软,硬机器人挖掘机,将包括注射功能,耐机械损伤,颗粒介质的特异性和能量最小化操作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Yael Politi, Ph.D.其他文献

Professorin Dr. Yael Politi, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Yael Politi, Ph.D.', 18)}}的其他基金

Micro-mechanics and Structure-function relationships in spider mechano-sensors; a key to understanding organ- performance
蜘蛛机械传感器的微观力学和结构功能关系;
  • 批准号:
    340613815
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Materials World Network: Structural design and micromechanical properties of mechanotransducing biological materials
材料世界网络:力传导生物材料的结构设计和微机械性能
  • 批准号:
    220144857
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Deciphering the role of actomyosin remodeling and mechanotransduction in sea urchin skeletogenesis
破译肌动球蛋白重塑和力转导在海胆骨骼发生中的作用
  • 批准号:
    524590563
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了