Vibroacoustic sensorics for medical device guidance

用于医疗设备引导的振动声学传感器

基本信息

项目摘要

We propose to use vibroacoustic signals that are generated during the interaction of medical interventional devices (e.g. needles, biopsy systems, catheters, graspers, interventional tools) with human tissue to add valuable information about clinical events, provide directional guidance and subsequently reduce related medical errors. Our prior work in that field has shown that the device tip (distal end) entering new tissue is to a large extent responsible for an audio signal received on the proximal end and that entering different tissues changes the audio characteristics. So far, we have managed to obtain data points in a laboratory setup using an initial sensor design attached to the proximal end and by that eliminating the need to develop dedicated clinical intervention tools, cables and reducing sterility issues. This technology likely will work without major alteration to existing and proven clinical tools. The research work of this proposal will attempt to introduce this laboratory technology to a specific needle-based clinical application (access to the femoral vessels - venous as well as arterial) that could lead to improve the quality of the procedure. A purpose build proximal MEMS audio sensor will transfer the data to an acquisition system that pre-processes the signal, extracts relevant features (advanced signal processing), and attempts to characterize (machine learning) important events during the intervention, like crossing main tissue layers or entering and leaving the vessel, and to give directional information towards the target destination and a confirmation on having reached the medical goal. We will closely interact with the clinical staff and record the actual procedure, interactions during the procedure, and other relevant events as a base for the system modeling. An important development step to understand and simulate signals and their behaviors is to build a dedicated synthetic phantom to model and match the findings of prior acquired results from entering animal tissue samples. This - together with the medical procedure information - is used to build a classification model that will allow us to simulate human interventions based on diagnostic imaging analysis (ultrasound). The setup will subsequently be tested, corrected, and optimized with real patient data obtained during a normal catheter procedure in a clinical interventional radiology setup. The next step is to validate the proposed guidance methodology in phantoms by indicating the increase in surgeonsperformance (targeting accuracy, speed of the procedure, confidence level. This research has enormous potential in other adjacent and connected research areas possibly allowing improved guidance accuracy, audio signal-based characterization of different soft tissues, as well as to provide additional guidance information and simulated haptic feedback/event information for a future (semi-)autonomous robotic surgery/catheter intervention.
我们建议使用在医疗介入器械(例如针、活检系统、导管、抓钳、介入工具)与人体组织相互作用期间产生的声振信号,以增加有关临床事件的有价值信息,提供方向性指导,并随后减少相关医疗错误。我们在该领域的先前工作已经表明,进入新组织的装置尖端(远端)在很大程度上负责在近端上接收的音频信号,并且进入不同组织改变音频特性。到目前为止,我们已经成功地使用连接到近端的初始传感器设计在实验室设置中获得了数据点,从而消除了开发专用临床干预工具、电缆的需要,并减少了无菌问题。这项技术可能不会对现有的和经过验证的临床工具进行重大修改。本提案的研究工作将尝试将该实验室技术引入特定的基于针的临床应用(进入股血管-静脉和动脉),从而提高手术质量。专用近端MEMS音频传感器将数据传输到采集系统,该采集系统对信号进行预处理,提取相关特征(高级信号处理),并尝试表征(机器学习)介入期间的重要事件,如穿过主要组织层或进入和离开血管,并提供朝向目标目的地的方向信息和已达到医疗目标的确认。我们将与临床工作人员密切互动,并记录实际手术、手术期间的互动以及其他相关事件,作为系统建模的基础。理解和模拟信号及其行为的一个重要开发步骤是构建专用合成体模,以模拟和匹配先前从进入动物组织样本获得的结果。这与医疗程序信息一起用于构建分类模型,该模型将允许我们基于诊断成像分析(超声)模拟人类干预。随后将使用临床介入放射学设置中正常导管手术期间获得的真实的患者数据对设置进行测试、校正和优化。下一步是通过指示外科医生性能的增加(靶向准确性、程序速度、置信水平)来验证所提出的指导方法。这项研究在其他相邻和连接的研究领域具有巨大的潜力,可能允许提高引导精度,基于音频信号的不同软组织的表征,以及为未来的(半)自主机器人手术/导管介入提供额外的引导信息和模拟触觉反馈/事件信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Gabriele A. Krombach其他文献

Professorin Dr. Gabriele A. Krombach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Gabriele A. Krombach', 18)}}的其他基金

Kernspintomographische Steuerung und Überwachung intramyokardialer Injektionen am ischämisch geschädigten Herzen
缺血损伤心脏心肌内注射的磁共振成像控制和监测
  • 批准号:
    20312839
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Surface-functionalised nanoporous solids: Towards responsive materials for SMART reactors with adjustable fluid adsorption, transport and molecular hydrogen sensorics (A03)
表面功能化纳米多孔固体:面向具有可调节流体吸附、传输和分子氢传感功能的智能反应器的响应材料 (A03)
  • 批准号:
    525621897
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了