Non-invasive imaging and high-fidelity coherent control of surface-supported spins

非侵入性成像和表面支持自旋的高保真相干控制

基本信息

项目摘要

Controlling individual atoms and molecules at their native spatio-temporal limit has an indispensable appeal that has driven fundamental research for decades. Atomic-scale interactions and correlations are also the basis of all timeless technological progress, ranging from nanoelectronics to information processing. In particular, a new attractive avenue has recently emerged for nanoscale quantum bits made of individual lanthanide atoms and molecules. The intrinsic large magnetic moment, non-trivial intra- as well as inter-atomic electron correlations, and long-term quantum coherence in these model systems altogether offer a myriad of new exciting possibilities across molecular magnetism and quantum computing research. My present scientific effort is devoted to understand and control quantum mechanical properties of such smallest building blocks of matter, especially by probing them in the least invasive manner. However, addressing the spin states in such quantum systems is an extremely challenging task. So far, only scanning tunneling microscopy (STM) with subatomic spatial resolution is capable of achieving this, albeit being highly invasive and limited with the scope of operational temperature (<4 K). Atomic force microscopy (AFM) using novel defect centers in diamond (NV) has the potential to overcome these limitations, given their unparalleled magnetic sensing capability, high-fidelity optical readout, and broad operational range of temperature. However, this method currently suffers from insufficient resolving power (tens of nm) primarily due to fluorescence quenching in so-called shallow NV centers. By combining controlled surface-chemistry with AFM-based manipulation techniques, I aim to resolve this in order to achieve highly sensitive and yet non-invasive access and quantum control at the atomic scale. The proposed programme is designed to surpass the current capabilities of STM in this context, while simultaneously generalizing the scopes of scanning NV-magnetometry for addressing solid-state spin systems. Through this programme I will target atomic-scale quantum architectures made of lanthanide single spins either adsorbed or embedded as artificial 2D lattice, for approaching room-temperature stable qubit arrays.
将单个原子和分子控制在其固有的时空极限内,具有不可或缺的吸引力,几十年来一直推动着基础研究。原子尺度的相互作用和关联也是所有永恒技术进步的基础,从纳米电子学到信息处理。特别是,最近出现了一种新的有吸引力的方法,用于由单个稀土原子和分子制成的纳米级量子比特。这些模型系统中固有的大磁矩、非平凡的原子内和原子间电子关联以及长期的量子相干性,这些都为分子磁学和量子计算研究提供了无数令人兴奋的新可能性。我目前的科学努力致力于理解和控制这种最小的物质构件的量子力学性质,特别是通过以最小侵入性的方式探测它们。然而,解决这类量子系统中的自旋态是一项极具挑战性的任务。到目前为止,只有具有亚原子空间分辨率的扫描隧道显微镜(STM)能够做到这一点,尽管它具有高度的侵入性和工作温度范围(&lt;4K)的限制。原子力显微镜(AFM)使用新型的钻石缺陷中心(NV),具有无与伦比的磁传感能力、高保真光学读出能力和广泛的工作温度范围,因此有可能克服这些限制。然而,这种方法目前的分辨率不足(几十纳米),主要是由于所谓的浅NV中心的荧光猝灭。通过将受控表面化学与基于原子力显微镜的操纵技术相结合,我的目标是解决这个问题,以便在原子尺度上实现高度敏感且非侵入性的访问和量子控制。拟议的方案旨在超越STM在这方面的现有能力,同时推广扫描NV磁测量的范围,以解决固态自旋系统的问题。通过这项计划,我将瞄准由镧系元素单自旋吸附或作为人造2D晶格嵌入的原子级量子体系结构,以接近室温稳定的量子比特阵列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Aparajita Singha, Ph.D.其他文献

Dr. Aparajita Singha, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
  • 批准号:
    82372016
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目

相似海外基金

Neuromelanin MRI: A tool for non-invasive investigation of dopaminergic abnormalities in adolescent substance use.
神经黑色素 MRI:一种用于非侵入性调查青少年物质使用中多巴胺能异常的工具。
  • 批准号:
    10735465
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief
节省阿片类药物的非手术生物可吸收神经刺激器,用于缓解疼痛
  • 批准号:
    10759642
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
  • 批准号:
    10591304
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Non-invasive coronary thrombus imaging to define the cause of acute myocardial infarction
无创冠状动脉血栓显像可明确急性心肌梗塞的病因
  • 批准号:
    MR/Y009770/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Research for local control and high accuracy of cancer senolytic therapy by non-invasive imaging
非侵入性成像局部控制和高精度癌症抗衰老治疗研究
  • 批准号:
    23K18259
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of cell free messenger RNA-based non-invasive diagnostic biomarker for Alzheimer's Disease
开发基于无细胞信使 RNA 的阿尔茨海默病非侵入性诊断生物标志物
  • 批准号:
    10761661
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
  • 批准号:
    10714021
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Non-Invasive Functional Assessments for Translational Retinal Therapeutics
视网膜转化治疗的非侵入性功能评估
  • 批准号:
    10654125
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Non-invasive assessment and modulation of brain-gut interoception in humans
人类脑肠内感受的无创评估和调节
  • 批准号:
    10591158
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Non-invasive molecular imaging tool for rapid, longitudinal assessment of localized metabolic disruptions in animal research and care
非侵入性分子成像工具,用于快速纵向评估动物研究和护理中的局部代谢紊乱
  • 批准号:
    10602045
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了