Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
基本信息
- 批准号:10591304
- 负责人:
- 金额:$ 29.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-04 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:Adjuvant TherapyAftercareArtificial IntelligenceAwardBiological MarkersCellsChromatinClinicalClinical TrialsCollectionColorectal CancerCommunitiesComplementComplexDataDependenceDetectionDevelopment PlansDiseaseDisease-Free SurvivalDoseEarly DiagnosisEarly identificationEnvironmentEpigenetic ProcessFaceGenomeGenomicsGoalsImageImmunotherapyInfusion proceduresInstitutionInternationalLengthLinkMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMeasuresMedicineMemorial Sloan-Kettering Cancer CenterMentorsMentorshipMetastatic MelanomaMethodsMonitorMutagenesisMutationNatureNeoadjuvant TherapyNew YorkNoiseNon-Small-Cell Lung CarcinomaNucleosomesOutcomePatient CarePatientsPhysiciansPlasmaPositioning AttributePostoperative PeriodPrecision therapeuticsProtocols documentationRecurrent Malignant NeoplasmRecurrent diseaseRegimenRelapseResearchResidual NeoplasmResistanceSamplingScientistScreening for cancerSignal TransductionSingle Nucleotide PolymorphismSiteSolid NeoplasmSourceSyncopeTherapeuticTobaccoToxic effectTrainingTumor BurdenTumor TissueUpdateValidationVisionVisitburden of illnesscancer genomicscancer recurrencecancer typecareercareer developmentcell free DNAcheckpoint inhibitioncohortcostdeep learningempowermentfallsgenome sequencingimprovedinnovationinstructorlaboratory experiencelearning classifierliquid biopsymelanomanext generation sequencingnon-invasive monitorpredictive modelingprognosticprototyperadiological imagingresponseskillstargeted sequencingtenure tracktreatment responsetumortumor DNAunnecessary treatmentvariant detectionwhole genome
项目摘要
Research: The ability to monitor malignant tumor burden below the limit of radiographic detection remains a
major unmet need. Liquid biopsy for circulating tumor DNA (ctDNA) offers promise, however, deep targeted
sequencing methods – the conventional approach in the field – face a sensitivity plateau in low volume cancer
due to the sparsity of ctDNA signal. Whole genome sequencing (WGS) of plasma overcomes this sensitivity
barrier by expanding the number of informative sites to the thousands of somatic single nucleotide variants
observed across the genome in solid tumors. We showed with our tumor-informed MRDetect framework that
WGS of plasma can increase liquid biopsy sensitivity by 1-2 orders of magnitude beyond deep targeted
sequencing methods. To expand applicability and overcome MRDetect’s need for matched tumor tissue, I built
MRD-EDGE, a plasma-only (de novo) classifier that uses advanced machine learning to increase error
suppression and amplify ctDNA signal. My preliminary data shows that MRD-EDGE can quantify ctDNA tumor
burden during the nadir of response to immunotherapy in patients with advanced melanoma, and can
demonstrate a response to treatment as early as 3 weeks after first infusion. MRD-EDGE therefore enables
precise monitoring of malignant disease burden in response to therapy using standard WGS alone.
In this proposal, I aim to first radically improve MRD-EDGE sensitivity by including epigenetic features that
inform likelihood of cancer mutagenesis, which I hypothesize will allow for unprecedented plasma-only liquid
biopsy sensitivity. I will then use the optimized MRD-EDGE platform to define early response or resistance to
immunotherapy in metastatic melanoma, which will establish ctDNA as a biomarker that can complement or
replace imaging. Finally, I will optimize MRD-EDGE for use in lung cancer and use the platform to monitor
response to neoadjuvant immunotherapy and detect postoperative minimal residual disease. I expect that
ultra-sensitive monitoring of ctDNA dynamics in the neoadjuvant period can guide precision adjuvant therapy in
the postoperative period and thereby provide a transformative impact on patient care.
Candidate: I am an Instructor of Medicine at Memorial Sloan Kettering Cancer Center (MSK) and a Visiting
Fellow at the New York Genome Center (NYGC). I have outlined a 5-year career development plan to
transition to an independent, tenure-track physician-scientist investigating the detection and monitoring of solid
tumors through ultrasensitive liquid biopsy. I will conduct the proposed research under the mentorship of Dr.
Dan Landau, an internationally recognized expert in liquid biopsy and cancer genomics. I will use the K08
award to further develop skills in next-generation sequencing methods and analysis and advanced machine
learning. MSK and the NYGC are ideal environments in which to pursue my scientific and career goals. Both
institutions have world class research communities and an outstanding track record of training independent
physician-scientists.
研究:监测低于放射学检测极限的恶性肿瘤负担的能力仍是一个问题
未得到满足的主要需求。循环肿瘤DNA(CtDNA)的液体活检提供了希望,然而,深度靶向
测序方法--该领域的传统方法--面临着低体积癌症的敏感性平台期
由于ctDNA信号的稀疏性。血浆的全基因组测序(Wgs)克服了这种敏感性。
通过将信息位点的数量扩大到数千个体细胞单核苷酸变体来设置障碍
在实体肿瘤的基因组中观察到。我们用我们的肿瘤信息核磁共振检测框架显示
血浆的WGS可以将液体活检的灵敏度提高1-2个数量级,超过深度靶向
测序方法。为了扩大适用性并克服MRDetect对匹配肿瘤组织的需求,我建立了
MRD-EDGE,一种仅使用等离子体(从头开始)的分类器,它使用高级机器学习来增加错误
抑制和放大ctDNA信号。我的初步数据显示mrd-edge可以对ctdna肿瘤进行量化。
晚期黑色素瘤患者免疫治疗反应最低点期间的负担,并且可以
最早在第一次注射后3周表现出对治疗的反应。因此,MRD-EDGE支持
对仅使用标准WGS的治疗反应的恶性疾病负担进行精确监测。
在这项提议中,我的目标是首先从根本上提高MRD-EDGE的敏感性,包括
告知癌症突变的可能性,我假设这将允许史无前例的纯血浆液体
活检敏感度。然后,我将使用优化的MRD-EDGE平台来定义早期响应或抵抗
转移性黑色素瘤的免疫治疗,这将建立ctDNA作为一种生物标记物,可以补充或
更换成像。最后,我将优化MRD-EDGE用于肺癌,并使用该平台进行监测
对新辅助免疫治疗的反应和术后微小残留病的检测。我希望如此
超灵敏监测新佐剂期ctDNA动态变化可指导临床精确辅助治疗
这可能会对患者的护理产生革命性的影响。
候选人:我是纪念斯隆-凯特琳癌症中心(MSK)的医学讲师和客座医生
纽约基因组中心(NYGC)研究员。我已经概述了一个5年的职业发展计划
过渡到独立的终身教职医生兼科学家,研究固体物质的检测和监测
肿瘤通过超灵敏的液体活组织检查。我将在博士的指导下进行这项拟议的研究。
丹·兰道,一位国际公认的液体活检和癌症基因组学专家。我要用K08
获奖以进一步发展下一代测序方法和分析以及先进机器的技能
学习。MSK和NYGC是我追求科学和职业目标的理想环境。两者都有
机构拥有世界级的研究社区和出色的独立培训记录
内科医生-科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Widman其他文献
Adam Widman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 29.26万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 29.26万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 29.26万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 29.26万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 29.26万 - 项目类别: