Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
基本信息
- 批准号:10591304
- 负责人:
- 金额:$ 29.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-04 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:Adjuvant TherapyAftercareArtificial IntelligenceAwardBiological MarkersCellsChromatinClinicalClinical TrialsCollectionColorectal CancerCommunitiesComplementComplexDataDependenceDetectionDevelopment PlansDiseaseDisease-Free SurvivalDoseEarly DiagnosisEarly identificationEnvironmentEpigenetic ProcessFaceGenomeGenomicsGoalsImageImmunotherapyInfusion proceduresInstitutionInternationalLengthLinkMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMeasuresMedicineMemorial Sloan-Kettering Cancer CenterMentorsMentorshipMetastatic MelanomaMethodsMonitorMutagenesisMutationNatureNeoadjuvant TherapyNew YorkNoiseNon-Small-Cell Lung CarcinomaNucleosomesOutcomePatient CarePatientsPhysiciansPlasmaPositioning AttributePostoperative PeriodPrecision therapeuticsProtocols documentationRecurrent Malignant NeoplasmRecurrent diseaseRegimenRelapseResearchResidual NeoplasmResistanceSamplingScientistScreening for cancerSignal TransductionSingle Nucleotide PolymorphismSiteSolid NeoplasmSourceSyncopeTherapeuticTobaccoToxic effectTrainingTumor BurdenTumor TissueUpdateValidationVisionVisitburden of illnesscancer genomicscancer recurrencecancer typecareercareer developmentcell free DNAcheckpoint inhibitioncohortcostdeep learningempowermentfallsgenome sequencingimprovedinnovationinstructorlaboratory experiencelearning classifierliquid biopsymelanomanext generation sequencingnon-invasive monitorpredictive modelingprognosticprototyperadiological imagingresponseskillstargeted sequencingtenure tracktreatment responsetumortumor DNAunnecessary treatmentvariant detectionwhole genome
项目摘要
Research: The ability to monitor malignant tumor burden below the limit of radiographic detection remains a
major unmet need. Liquid biopsy for circulating tumor DNA (ctDNA) offers promise, however, deep targeted
sequencing methods – the conventional approach in the field – face a sensitivity plateau in low volume cancer
due to the sparsity of ctDNA signal. Whole genome sequencing (WGS) of plasma overcomes this sensitivity
barrier by expanding the number of informative sites to the thousands of somatic single nucleotide variants
observed across the genome in solid tumors. We showed with our tumor-informed MRDetect framework that
WGS of plasma can increase liquid biopsy sensitivity by 1-2 orders of magnitude beyond deep targeted
sequencing methods. To expand applicability and overcome MRDetect’s need for matched tumor tissue, I built
MRD-EDGE, a plasma-only (de novo) classifier that uses advanced machine learning to increase error
suppression and amplify ctDNA signal. My preliminary data shows that MRD-EDGE can quantify ctDNA tumor
burden during the nadir of response to immunotherapy in patients with advanced melanoma, and can
demonstrate a response to treatment as early as 3 weeks after first infusion. MRD-EDGE therefore enables
precise monitoring of malignant disease burden in response to therapy using standard WGS alone.
In this proposal, I aim to first radically improve MRD-EDGE sensitivity by including epigenetic features that
inform likelihood of cancer mutagenesis, which I hypothesize will allow for unprecedented plasma-only liquid
biopsy sensitivity. I will then use the optimized MRD-EDGE platform to define early response or resistance to
immunotherapy in metastatic melanoma, which will establish ctDNA as a biomarker that can complement or
replace imaging. Finally, I will optimize MRD-EDGE for use in lung cancer and use the platform to monitor
response to neoadjuvant immunotherapy and detect postoperative minimal residual disease. I expect that
ultra-sensitive monitoring of ctDNA dynamics in the neoadjuvant period can guide precision adjuvant therapy in
the postoperative period and thereby provide a transformative impact on patient care.
Candidate: I am an Instructor of Medicine at Memorial Sloan Kettering Cancer Center (MSK) and a Visiting
Fellow at the New York Genome Center (NYGC). I have outlined a 5-year career development plan to
transition to an independent, tenure-track physician-scientist investigating the detection and monitoring of solid
tumors through ultrasensitive liquid biopsy. I will conduct the proposed research under the mentorship of Dr.
Dan Landau, an internationally recognized expert in liquid biopsy and cancer genomics. I will use the K08
award to further develop skills in next-generation sequencing methods and analysis and advanced machine
learning. MSK and the NYGC are ideal environments in which to pursue my scientific and career goals. Both
institutions have world class research communities and an outstanding track record of training independent
physician-scientists.
研究:在放射学检测极限以下监测恶性肿瘤负荷的能力仍然是一个挑战。
未满足的重大需求。循环肿瘤DNA(ctDNA)的液体活检提供了希望,然而,
测序方法-该领域的常规方法-在低体积癌症中面临敏感性平台
由于ctDNA信号的稀疏性。血浆全基因组测序(WGS)克服了这种敏感性
通过将信息位点的数量扩展到数千个体细胞单核苷酸变异来消除障碍
在实体瘤的基因组中观察到。我们用我们的肿瘤信息MRDetect框架表明,
血浆的WGS可以将液体活检灵敏度提高1-2个数量级,超过深度靶向
测序方法为了扩大适用性并克服MRDetect对匹配肿瘤组织的需求,
MRD-EDGE,一种仅限血浆的(从头)分类器,使用先进的机器学习来增加错误
抑制和放大ctDNA信号。我的初步数据显示,MRD-EDGE可以定量ctDNA肿瘤
在晚期黑色素瘤患者免疫治疗反应最低点期间的负担,
最早在首次输注后3周就显示出对治疗的反应。因此,MRD-EDGE能够
精确监测对单独使用标准WGS治疗的恶性疾病负荷。
在这个提议中,我的目标是首先通过包括表观遗传特征来从根本上提高MRD-EDGE灵敏度,
告知癌症诱变可能性,我假设这将允许前所未有的纯血浆液体
活检灵敏度然后,我将使用优化的MRD-EDGE平台来定义对以下问题的早期响应或抵抗:
转移性黑色素瘤的免疫治疗,这将建立ctDNA作为生物标志物,可以补充或
取代成像。最后,我将优化MRD-EDGE用于肺癌,并使用该平台监测
对新辅助免疫治疗的反应和检测术后微小残留病。我预计
在新辅助治疗期间对ctDNA动力学的超灵敏监测可以指导精确的辅助治疗,
从而对患者护理产生变革性影响。
候选人:我是纪念斯隆凯特琳癌症中心(MSK)的医学讲师,也是一名访问医生。
纽约基因组中心(NYGC)研究员。我已经制定了一个5年的职业发展计划,
过渡到一个独立的,终身跟踪物理学家,科学家调查固体的检测和监测
通过超灵敏液体活检来检测肿瘤。我将在博士的指导下进行这项研究。
丹朗道,国际公认的液体活检和癌症基因组学专家。我用K 08
该奖项旨在进一步发展下一代测序方法和分析以及先进机器的技能
学习MSK和NYGC是追求我的科学和职业目标的理想环境。两
机构拥有世界级的研究社区和独立培训的杰出记录
物理科学家
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Widman其他文献
Adam Widman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 29.26万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 29.26万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 29.26万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 29.26万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 29.26万 - 项目类别: