Microresonator Frequency Combs Exploiting Quadratic and Cubic Optical Nonlinearities
利用二次和三次光学非线性的微谐振器频率梳
基本信息
- 批准号:505515860
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
QuadCOMB aims at exploring novel concepts for microresonator-based frequency comb sources that combine second-order (‘quadratic’) and third-order (‘cubic’) optical nonlinearities in a chip-scale device. Over the previous years, so-called Kerr combs, generated in high-Q microresonators with cubic nonlinearities, have raised significant interest both from a theoretical and a technological perspective. Specifically, these devices offer broadband spectra with uniform line powers and free spectral ranges of tens or hundreds of gigahertz, while being fully amenable to chip-scale integration. Kerr frequency combs thus open the potential to disrupt a series of highly relevant applications, ranging from massively parallel wavelength-division multiplexing (WDM) in optical communications to high-precision optical ranging and high-resolution spectroscopy. However, despite this potential, widespread deployment of Kerr combs is still hindered by the high pump power levels and by the low power conversion efficiency via the rather weak cubic nonlinearities. In addition, efficient schemes for controlling the carrier-envelope offset frequency of Kerr combs are still lacking, thereby impeding the application of Kerr combs in high-precision optical metrology and optical frequency standards. Within QuadCOMB, we will explore, implement, and experimentally demonstrate novel approaches for frequency comb generation in photonic integrated circuits (PIC) that offer improved power conversion efficiency along with stabilized carrier-envelope offset frequency by combining Kerr-type cubic with quadratic optical nonlinearities. We consider hybrid device concepts, where cubic and quadratic optical nonlinearities are first realized on distinct integration platforms and then merged on a package-level by 3D-printed chip-chip connections, as well as monolithically integrated devices, built on a single integration platform that simultaneously features cubic and quadratic nonlinearities. As a starting point, we will develop a theoretical framework that accounts for the simultaneous influence of cubic and quadratic nonlinearities and that will allow us to study the dynamics of comb formation and to predict the characteristics of the resulting combs. Based on this, we will design, fabricate and characterize hybrid and monolithic comb sources, exploiting silicon-nitride (Si3N4) PIC with cubic nonlinearities and AlGaAs-on-Insulator PIC offering both quadratic and cubic nonlinearities. Based on successful implementation of the comb sources, we shall demonstrate their viability in proof-of-concept experiments related to ultra-broadband signal processing and high-resolution spectroscopy. Bringing together leading researchers from the participating German and French groups and including a renowned scientist as a Mercator Fellow, QuadCOMB can rely on an internationally unique combination of skills in the field of photonic integration, nonlinear optics and chip-scale frequency comb sources.
QuadCOMB致力于探索基于微谐振器的频率梳状源的新概念,该频率梳状源在芯片级器件中结合了二阶(二次)和三阶(三次)光学非线性。在过去的几年里,在具有立方非线性的高Q微谐振器中产生的所谓的克尔梳子从理论和技术角度都引起了人们的极大兴趣。具体地说,这些设备提供具有统一线路功率的宽带频谱和数十或数百吉赫兹的自由频谱范围,同时完全服从芯片级集成。因此,克尔频率梳有可能颠覆一系列高度相关的应用,从光通信中的大规模并行波分复用(WDM)到高精度光学测距和高分辨率光谱分析。然而,尽管有这样的潜力,克尔梳子的广泛应用仍然受到高抽运功率水平和由于相当弱的立方非线性而导致的低功率转换效率的阻碍。此外,目前还缺乏有效的控制克尔梳子载波包络偏移频率的方案,从而阻碍了克尔梳子在高精度光学计量和光学频率标准中的应用。在QuadCOMB中,我们将探索、实施并实验演示在光子集成电路(PIC)中产生频率梳的新方法,该方法通过将克尔类型立方体与二次光学非线性相结合来提高功率转换效率并稳定载波包络偏移频率。我们考虑混合器件的概念,其中立方和二次光学非线性首先在不同的集成平台上实现,然后通过3D打印芯片-芯片连接在封装级别上合并,以及构建在同时具有立方和二次非线性的单个集成平台上的单片集成器件。作为起点,我们将建立一个理论框架,解释三次和二次非线性的同时影响,这将使我们能够研究梳子形成的动力学,并预测由此产生的梳子的特性。在此基础上,我们将设计、制造和表征混合型和单片梳状源,开发具有立方非线性的氮化硅(Si3N4)PIC和同时提供二次和立方非线性的AlGaAs-on-Insulator PIC。在梳状源成功实现的基础上,我们将在与超宽带信号处理和高分辨率光谱学相关的概念验证实验中展示其可行性。QuadCOMB汇集了来自参与的德国和法国小组的领先研究人员,其中包括一位著名的科学家作为墨卡托研究员,QuadCOMB可以依靠在光子集成、非线性光学和芯片级频率梳源领域的国际独特技能组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Christian Koos其他文献
Professor Dr.-Ing. Christian Koos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Christian Koos', 18)}}的其他基金
Ultra-Wideband Photonically Assisted Analog-to-Digital Converters (PACE) - Phase 2
超宽带光子辅助模数转换器 (PACE) - 第 2 阶段
- 批准号:
403188360 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Priority Programmes
Hybrid Integrated Photonic-Electronic Systems (HIPES)
混合集成光子电子系统 (HIPES)
- 批准号:
383043731 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Ultra-Broadband Waveform Generation Using Actively Stabilized Hybrid Photonic-Electronic Circuits - Phase 2
使用主动稳定混合光子电子电路生成超宽带波形 - 第 2 阶段
- 批准号:
403187440 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Hybrid Chip-Scale Frequency Combs Combining III-V Quantum-Dash Mode-Locked Lasers and High-Q Silicon-Nitride Microresonators
结合了 III-V 量子冲刺锁模激光器和高 Q 值氮化硅微谐振器的混合芯片级频率梳
- 批准号:
491234846 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
- 批准号:
10089417 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Precision Rulers for the Visible - Chip Scale Optical Frequency Combs
可见光精密尺 - 芯片级光学频率梳
- 批准号:
DE230100964 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Optical metrology using optical frequency combs and hollow core fibres
使用光学频率梳和空心光纤的光学计量
- 批准号:
2889068 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
- 批准号:
2219760 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
High-Throughput and Energy-Efficient Data Centre Interconnects Using Frequency Combs and Coherent Detection
使用频率梳和相干检测的高吞吐量和节能数据中心互连
- 批准号:
545670-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
- 批准号:
2219672 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Next-Generation LIDAR with Novel Microresonator Frequency Combs
具有新型微谐振器频率梳的下一代激光雷达
- 批准号:
DE210101904 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Optical frequency combs for multichannel optical vibration sensing
用于多通道光学振动传感的光学频率梳
- 批准号:
555621-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alliance Grants