Generalised Maxwell theories - theoretical structure and experimental tests

广义麦克斯韦理论 - 理论结构和实验测试

基本信息

项目摘要

The electromagnetic field is one of the most important system in physics. All the information we are receiving and all measurements we are doing rely on electrodynamics. Though the Maxwell equations provide an extremely successful description of all electromagnetic phenomena there are reasons to reconsider this theory: (i) The standard formulation of electrodynamics leads to severe problems in the self-force problem (radiation reaction) of charged point particles. One derives unphysical pre-acceleration as well as run-away solutions. (ii) In constructive axiomatic approaches to establish the space-time geometry of General (and Special) Relativity the unique properties of light play an essential role. Any modification of the phenomena of electrodynamics will also be directly related to a modified space-time geometry. This is also related to (iii) the search for a theory of Quantum Gravity. Since according to our present understanding General Relativity and Quantum Theory are theoretically not compatible, a new theory combining the geometric and quantum aspects of our world has to be different from at least one of these theories what, for consistency, also would change the Maxwell equations. Accordingly, it is of utmost importance to find out whether the equations underlying all electromagnetic phenomena are the well-known Maxwell equations or whether one has to take into account modifications.Accordingly, we have to discuss all possible modifications in a structured way and then to explore the experimental significance of these modifications. Thereby we will proceed in a systematic way in that we discuss non-linear, non-local and non-homogeneous extensions of the Maxwell equations. For these modifications we discuss wave propagation, stationary solutions for point sources, the equation of motion for charged particles including self-force, the hydrogen atom, and the Equivalence Principle for electromagnetically bound systems. Whereas the planned investigation is theoretical, it will also be of high relevance in view of experiments: It will provide additional or new interpretations of experiments that have already been done, and it will also suggest new experiments dedicated to particular aspects of the Maxwell equations. If it turns out that there might be modifications of these equations all measurements and observations have to be re-interpreted.Orléans and Bremen are amongst the most active groups worldwide in this research area. This project will benefit from a mixture of common and complementary expertise. Both groups are connected to top-level international collaborations. The coordinators, additional applicants together with further co-workers will be a strong collaborating team in order to work on the proposed work plan.
电子场是物理学中最重要的系统之一。我们收到的所有信息以及我们进行的所有测量都依赖于电子设备。尽管麦克斯韦方程对所有电子现象提供了非常成功的描述,但有理由重新考虑这一理论:(i)电子的标准公式导致带电点颗粒的自力更生问题(辐射反应)中的严重问题。一个人衍生出非物理预加速和失败的解决方案。 (ii)在建立一​​般(和特殊)相对论的时空几何形状的建设性公理方法中,光的独特特性起着至关重要的作用。对电子现象的任何修改也将与修改的时空几何形状直接相关。这也与(iii)寻找量子重力理论有关。由于根据我们目前的理解,一般的相对论和量子理论在神秘上不兼容,因此,结合我们世界的几何和量子方面的新理论必须与至少这些理论中的一种不同,因为一致性,对于一致性而言,也会改变麦克斯韦方程。根据,确定所有电子现象的基础方程是否是著名的麦克斯韦方程,还是必须考虑修改。我们必须以结构化的方式讨论所有可能的修改,然后探索这些修饰的实验意义。因此,我们将以系统的方式进行,因为我们讨论了麦克斯韦方程的非线性,非本地和非均匀扩展。对于这些修改,我们讨论了波传播,点源的固定溶液,包括自力,氢原子在内的带电颗粒的运动等效性以及电子结合系统的等效原理。尽管计划的调查是理论上的,但鉴于实验的观点,它也将具有很高的相关性:它将提供已经进行的实验的其他或新解释,并且还将提出专门针对麦克斯韦方程的特定方面的新实验。如果事实证明,这些方程可能会进行修改,所有测量值和观察结果都必须重新解释。orléans和Bremen,是该研究领域全球最活跃的群体之一。该项目将受益于共同和补充专业知识的混合。两组都与顶级国际合作有关。协调员,其他申请人以及进一步的同事将是一个强大的合作团队,以制定拟议的工作计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Claus Lämmerzahl其他文献

Professor Dr. Claus Lämmerzahl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Claus Lämmerzahl', 18)}}的其他基金

General Relativistic theory of viscous accretion disks around Black Holes
黑洞周围粘性吸积盘的广义相对论理论
  • 批准号:
    330061340
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamics of neutral and charged objects in gravitational fields coupled to nonlinear electrodynamics
引力场中中性和带电物体的动力学与非线性电动力学耦合
  • 批准号:
    259042421
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Improved test of the Weak Equivalence Principle: First scientific results of the MICROSCOPE mission
弱等效原理的改进测试:显微镜任务的第一个科学成果
  • 批准号:
    247729241
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Die Selbstkraft massiver geladener Teilchen
大质量带电粒子的自力
  • 批准号:
    202233933
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The motion of structured test bodies in gravitational fields: Equitations of motion and their solutions
引力场中结构化测试体的运动:运动方程及其解
  • 批准号:
    193896206
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cold atoms in gravity and microgravity
重力和微重力下的冷原子
  • 批准号:
    197438266
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effects of spacetime fluctuations
时空涨落的影响
  • 批准号:
    91114040
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
General relativistic theory of spin-fluid accretion disks around Black Holes
黑洞周围自旋流体吸积盘的广义相对论理论
  • 批准号:
    451018747
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Propagation of light signals near a black hole surrounded by a plasma
被等离子体包围的黑洞附近光信号的传播
  • 批准号:
    429796200
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
General relativistic theory of charged accretion disk structures around black holes: influence of the (self)-electromagnetic interaction
黑洞周围带电吸积盘结构的广义相对论理论:(自)电磁相互作用的影响
  • 批准号:
    510727404
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

随机Maxwell方程数值算法及其理论研究
  • 批准号:
    12171047
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
有界区域上Vlasov–Poisson/Maxwell–Boltzmann方程组的数学理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Boltzmann方程及相关耦合系统在临界正则性空间中的数学理论
  • 批准号:
    11871274
  • 批准年份:
    2018
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
动理学方程的适定性理论与渐进分析
  • 批准号:
    11771236
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
Maxwell本构方程下的可压缩Navier-Stokes方程组的数学理论研究
  • 批准号:
    11701556
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Micro-coil Based Cochlear Implant
基于微线圈的人工耳蜗的开发
  • 批准号:
    10658004
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Spectral properties of interface problems for Maxwell systems
麦克斯韦系统界面问题的谱特性
  • 批准号:
    EP/W007037/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Spectral properties of interface problems for Maxwell systems
麦克斯韦系统界面问题的谱特性
  • 批准号:
    EP/W006553/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of Maxwell-Schrodinger equation solver for modeling quantum-electromagnetic phenomena
开发用于模拟量子电磁现象的麦克斯韦-薛定谔方程求解器
  • 批准号:
    562121-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Maxwell RSC rapid DNA/RNA purification instrument for high-quality genotyping and phenotyping research
Maxwell RSC 快速 DNA/RNA 纯化仪,用于高质量基因分型和表型研究
  • 批准号:
    10799221
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了